Modeling of magnitude distributions by the generalized truncated exponential distribution
Raschke, M
Journal of Seismology 19(1): 265-271
2015
ISSN/ISBN: 1383-4649
DOI: 10.1007/s10950-014-9460-1
Accession: 064715670
The probability distribution of the magnitude can be modeled by an exponential distribution according to the Gutenberg-Richter relation.
PDF emailed within 0-6 h: $19.90
Related References
Makjanic Berislav 1982: On the generalized exponential distribution of earthquake intensity and magnitude Bulletin of the Seismological Society of America 72(3): 981-986Aslam, M; Kundu, D; Ahmad, M 2010: Time truncated acceptance sampling plans for generalized exponential distribution Journal of Applied Statistics 37(4): 555-566
De, S K; Zacks, S 2015: Exact Calculation of the Distributions of the Stopping Times of Two Types of Truncated SPRT for the Mean of the Exponential Distribution Methodology and Computing in Applied Probability 17(4): 915-927
P.C. Joshi 1982: A note on the mixed moments of order statistics from exponential and truncated exponential distributions Journal of Statistical Planning and Inference 6(1): 13-16
Dallery, Y. 1994: On modeling failure and repair times in stochastic models for manufacturing systems using generalized exponential distributions Queueing Systems 15(1-4): 199-209
Aggarwala, R.; Balakrishnan, N. 1996: Recurrence relations for single and product moments of progressive type-II right censored order statistics from exponential and truncated exponential distributions Annals of the Institute of Statistical Mathematics 48(4): 757-771
Patil, G.P. 1962: Maximum Likelihood Estimation for Generalized Power Series Distributions and Its Application to a Truncated Binomial Distribution Biometrika 49(1-2): 227-237
Cosentino, P.; Ficarra, V.; Luzio, D. 1977: Truncated exponential frequency-magnitude relationship in earthquake statistics Bulletin of the Seismological Society of America 67(6): 1615-1623
Seino, M.; Fukui, K.; Churei, M. 1989: Distributions magnitude vs fréquence des séismes avec la magnitude de limite supérieure - Magnitude vs. frequency distributions of earthquakes with upperbound magnitude Jishin 42(1): 73-80
Cosentino, P.; Luzio, D. 1977: Truncated exponential frequency-magnitude relation applied to the Sicilian earthquakes Publications of the Institute of Geophysics, Series A: Physics of the Earth Interior 5(116): 221-228
Gloor, W.E. 1983: Extending the continuum of molecular weight distributions based on the generalized exponential (Gex) distributions Journal of Applied Polymer Science 28(2): 795-805
Ito, Y. 1983: Echelle de dimension des ruptures. II. Distribution dans le temps et l'espace et distribution fréquence-magnitude d'essaim de séismes - Scaling of rupture size (Part 2) ― on time and space distributions and magnitude-frequency distribution of swarm Jishin 36(1): 13-21
Trader, R.L. 1985: Bayesian inference for truncated exponential distributions Communications in Statistics. Theory and Methods 14(3): 585-592
Komori, Y.; Hirose, H. 2002: Parameter estimation based on grouped or continuous data for truncated exponential distributions Communications in Statistics. Theory and Methods 31(6): 889-900
Tomitaka, S.; Kawasaki, Y.; Ide, K.; Akutagawa, M.; Yamada, H.; Furukawa, T.A. 2017: Exponential distribution of total depressive symptom scores in relation to exponential latent trait and item threshold distributions: a simulation study Bmc Research Notes 10(1): 614
Rakesh, G.U.P.T.A.; Ritu, G.O.E.L.; Alka, C.H.A.U.D.H.A.R.Y. 1994: Analysis of a two-unit standby system with fixed allowed down time and truncated exponential lifetime distributions Reliability Engineering and Systems Safety 44(2): 119-124
Debasis Kundu; Rameshwar, D. Gupta; Anubhav Manglick 2005: Discriminating between the log-normal and generalized exponential distributions Journal of Statistical Planning and Inference 127(1-2): 213-227
Gupta, R.D.; Kundu, D. 2004: Discriminating between gamma and generalized exponential distributions Journal of Statistical Computation and Simulation 74(2): 107-121
Gupta, R.D.; Kundu, D. 2003: Discriminating between Weibull and generalized exponential distributions Computational Statistics and Data Analysis 43(2): 179-196
Shorgin, S.Y. 1998: Exponential bounds for generalized poisson distributions Journal of Mathematical Sciences 91(3): 2984-2989