Automatic image annotation by combining generative and discriminant models
Ji, P; Gao, X; Hu, X
Neurocomputing 236: 48-55
2017
ISSN/ISBN: 0925-2312 DOI: 10.1016/j.neucom.2016.09.108
Accession: 064960923
PDF emailed within 0-6 h: $19.90
Related References
Burdescu, D Dan; Mihai, C Gabriel; Stanescu, L; Brezovan, M 2013: Automatic image annotation and semantic based image retrieval for medical domain Neurocomputing 109: 33-48Kalpathy-Cramer, J.; Hersh, W. 2007: Automatic image modality based classification and annotation to improve medical image retrieval Studies in Health Technology and Informatics 129(Pt 2): 1334-1338
Ko, B.Chul.; Lee, J.; Nam, J-Yeal. 2012: Automatic medical image annotation and keyword-based image retrieval using relevance feedback Journal of Digital Imaging 25(4): 454-465
Zare, M.Reza.; Mueen, A.; Seng, W.Chaw. 2014: Automatic medical X-ray image classification using annotation Journal of Digital Imaging 27(1): 77-89
Jian Yao; Zhongfei (Mark) Zhang; Sameer Antani; Rodney Long; George Thoma 2008: Automatic medical image annotation and retrieval Neurocomputing 71(10-12): 2012-2022
Mueen, A.; Zainuddin, R.; Baba, M.Sapiyan. 2008: Automatic multilevel medical image annotation and retrieval Journal of Digital Imaging 21(3): 290-295
Zhang, S.; Huang, J.; Li, H.; Metaxas, D.N. 2012: Automatic image annotation and retrieval using group sparsity IEEE Transactions on Systems Man and Cybernetics. Part B Cybernetics: a Publication of the IEEE Systems Man and Cybernetics Society 42(3): 838-849
Díaz, G.; Romero, E. 2012: Micro-structural tissue analysis for automatic histopathological image annotation Microscopy Research and Technique 75(3): 343-358
Lee, S.Min.; Kim, H.Pyung.; Jeon, K.; Lee, S-Hwy.; Seo, J.Keun. 2019: Automatic 3D cephalometric annotation system using shadowed 2D image-based machine learning Physics in Medicine and Biology 64(5): 055002
Yunhee Shin; Youngrae Kim; Eun Yi Kim 2010: Automatic textile image annotation by predicting emotional concepts from visual features Image and Vision Computing 28(3): 526-537
Watanabe, S.; Ueno, T.; Kimura, Y.; Mishina, M.; Sugimoto, N. 2021: Generative image transformer (GIT): unsupervised continuous image generative and transformable model for [123I]FP-CIT SPECT images Annals of Nuclear Medicine 35(11): 1203-1213
Hao, Z.; Ge, H.; Wang, L. 2018: Visual attention mechanism and support vector machine based automatic image annotation Plos one 13(11): E0206971
Zhen, L.I.; Yap, K.H. 2014: Beyond Bag-of-Words: combining generative and discriminative models for scene categorization Multimedia Tools and Applications 71(3): 1033-1050
Kwon, D.; Shinohara, R.T.; Akbari, H.; Davatzikos, C. 2014: Combining generative models for multifocal glioma segmentation and registration Medical Image Computing and Computer-Assisted Intervention: Miccai . International Conference on Medical Image Computing and Computer-Assisted Intervention 17(Part 1): 763-770
Guermeur, Y. 2002: Combining discriminant models with new multi-class SVMs Pattern Analysis and Applications 5(2): 168-179
Jin, C; Jin, S-Wei 2015: Automatic image annotation using feature selection based on improving quantum particle swarm optimization Signal Processing 109: 172-181
Rosales, R.; Sclaroff, S. 2006: Combining Generative and Discriminative Models in a Framework for Articulated Pose Estimation International Journal of Computer Vision 67(3): 251-276
Wu, B.F.; Chen, Y.L.; Chiu, C.C. 2005: A discriminant analysis based recursive automatic thresholding approach for image segmentation Ieice Transactions on Information and Systems 88(7): 1716-1723
Griesemer, M.; Kimbrel, J.A.; Zhou, C.E.; Navid, A.; D'haeseleer, P. 2018: Combining multiple functional annotation tools increases coverage of metabolic annotation Bmc Genomics 19(1): 948
Iglesias, J.E.; Konukoglu, E.; Montillo, A.; Tu, Z.; Criminisi, A. 2011: Combining generative and discriminative models for semantic segmentation of CT scans via active learning Information Processing in Medical Imaging: Proceedings of the . Conference 22: 25-36