+ Site Statistics

+ Search Articles

+ PDF Full Text Service

How our service works

Request PDF Full Text

+ Follow Us

Follow on Facebook

Follow on Twitter

Follow on LinkedIn

+ Subscribe to Site Feeds

Most Shared

PDF Full Text

+ Translate

+ Recently Requested

Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors

Pandey, A.; Kumar, A.; Puri, S.

PhysicalReview.E96(5-1):052211

2017

Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.

Related references