+ Site Statistics
References:
54,258,434
Abstracts:
29,560,870
PMIDs:
28,072,757
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Usefulness of Pulsed Arterial Spin Labeling Magnetic Resonance Imaging in New-onset Seizure Patients and Its Comparison with Dynamic Susceptibility Contrast Magnetic Resonance Imaging



Usefulness of Pulsed Arterial Spin Labeling Magnetic Resonance Imaging in New-onset Seizure Patients and Its Comparison with Dynamic Susceptibility Contrast Magnetic Resonance Imaging



Journal of Neurosciences in Rural Practice 8(4): 569-574



Dynamic susceptibility contrast (DSC) perfusion and pulsed arterial spin labeling (PASL) imaging are newer advanced magnetic resonance sequences which are capable of detecting vascular changes in patients with new-onset seizure disorder even when no significant abnormalities are visualized on conventional sequences. The purpose of our study is to establish utility of arterial spin labeling (ASL) in new-onset seizure patients and compare ASL with DSC perfusion sequence. Twenty-six patients coming to emergency department with new-onset seizure disorder were evaluated using DSC and ASL sequence. Perfusion asymmetry was assessed using region of interests taken at places where signal asymmetry was maximal. PASL sequence showed focal vascular changes in form of hyperperfusion in four patients, hypoperfusion in nine patients, and normal perfusion in 13 patients. Altered perfusion whether hypo/hyperperfusion was detected in five out of 16 patients even when conventional sequences were normal. There was strong positive linear correlation between ASL and DSC with P = 0.001. Noninvasive PASL is capable of detecting vascular changes induced by seizure and is comparable to DSC sequence. Thus, it is recommended when there is a need for repeated evaluations; in follow-up/therapy response assessment and when contrast administration is contraindicated.

(PDF emailed within 1 workday: $29.90)

Accession: 065656207

Download citation: RISBibTeXText

PMID: 29204016


Related references

Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2(15)O positron emission tomography. European Journal of Radiology 70(3): 465-474, 2008

Comparison between dynamic susceptibility contrast magnetic resonance imaging and arterial spin labeling techniques in distinguishing malignant from benign brain tumors. European Journal of Radiology 85(9): 1545-1553, 2017

Optimal individual inversion time in brain arterial spin labeling perfusion magnetic resonance imaging: correlation with carotid hemodynamics measured with cine phase-contrast magnetic resonance imaging. Journal of Computer Assisted Tomography 37(2): 247-251, 2013

Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors. Journal of Neuroimaging 24(1): 23-30, 2015

Perfusion imaging of cerebral arteriovenous malformations: a study comparing quantitative continuous arterial spin labeling and dynamic contrast-enhanced magnetic resonance imaging at 3 T. Magnetic Resonance Imaging 29(9): 1157-1164, 2012

Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging. Investigative Radiology 49(6): 421-430, 2015

Clinical assessment of cerebral hemodynamics in Moyamoya disease via multiple inversion time arterial spin labeling and dynamic susceptibility contrast-magnetic resonance imaging: A comparative study. Journal of Neuroradiology. Journal de Neuroradiologie 44(4): 273-280, 2017

Brain tumors: a multimodality approach with diffusion-weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy, dynamic susceptibility contrast and dynamic contrast-enhanced magnetic resonance imaging. Magnetic Resonance Imaging Clinics of North America 21(2): 199-239, 2013

Potential of Noncontrast Magnetic Resonance Imaging With Diffusion-Weighted Imaging in Characterization of Breast Lesions: Intraindividual Comparison With Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Investigative Radiology 53(4): 229-235, 2017

Perfusion of the placenta assessed using arterial spin labeling and ferumoxytol dynamic contrast enhanced magnetic resonance imaging in the rhesus macaque. Magnetic Resonance in Medicine 2018, 2018

Comparative evaluation of 3-dimensional pseudocontinuous arterial spin labeling with dynamic contrast-enhanced perfusion magnetic resonance imaging in grading of human glioma. Journal of Computer Assisted Tomography 37(3): 321-326, 2013

Arterial spin-labeling magnetic resonance imaging for diagnosis of late seizure after stroke. Journal of the Neurological Sciences 339(1-2): 87-90, 2014

Arterial spin-labeling magnetic resonance imaging for diagnosis of early seizure after stroke. Journal of the Neurological Sciences 354(1-2): 127-128, 2016

Pulsed arterial-spin-labeling perfusion magnetic resonance imaging in pediatrics Strengths and advantages. Annals of Neurology 54(Suppl 7): S153, 2003

Role of diffusion weighted imaging and magnetic resonance spectroscopy in breast cancer patients with indeterminate dynamic contrast enhanced magnetic resonance imaging findings. Magnetic Resonance Imaging 2019, 2019