Genetics of steer daily and residual feed intake in two tropical beef genotypes, and relationships among intake, body composition, growth and other post-weaning measures

Barwick, S. A.; Wolcott, M. L.; Johnston, D. J.; Burrow, H. M.; Sullivan, M. T.

Animal Production Science 49(5-6): 351-366

2009


ISSN/ISBN: 1836-5787
DOI: 10.1071/ea08249
Accession: 066219066

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
Genetic parameters for Brahman (BRAH) and Tropical Composite (TCOMP) cattle were estimated for steer production traits recorded at weaning ( WEAN), 80 days post-weaning (POSTW), feedlot entry (ENTRY) and after similar to 120 days feedlot finishing (EXIT). The TCOMP was 50% Bos indicus, African Sanga or other tropically adapted Bos taurus, and 50% non-tropically adapted Bos taurus. Data involved 2216 steers, comprising 1007 BRAH by 53 sires and 1209 TCOMP by 50 sires. Individual daily feed intake (DFI) and residual feed intake (RFI) were assessed on 680 BRAH and 783 TCOMP steers over an similar to 70-day feedlot test. Other traits were liveweight (LWT), average daily gain (ADG), ultrasonically scanned rump (SP8) fat depth, rib (SRIB) fat depth, M. longissimus area (SEMA) and intra-muscular fat % (SIMF), body condition score (CS), hip height (HH), flight time (FT) and serum insulin-like growth factor-I concentration (IGF-I). BRAH were significantly (P < 0.05) lighter at ENTRY and EXIT, and had lower DFI (10.8 v. 13.2 kg/day) and RFI (-0.30 v. 0.17 kg/day), greater SP8 (5.8 v. 5.1 mm) but similar SRIB at ENTRY, lower SRIB (8.2 v. 8.9 mm) but similar SP8 at EXIT, and greater HH than TCOMP. Heritabilities for DFI, RFI, LWT, ADG, scanned body composition, HH and IGF-I measures, across measurement times, were generally in the 20 to 60% range for both genotypes. Genetic variance for RFI was 0.19 (kg/day)(2) in BRAH and 0.41 (kg/day)(2) in TCOMP, suggesting a clear potential to genetically change RFI in both genotypes. Trait variances and genetic correlations often differed between the genotypes, supporting the use of genotype-specific parameters in genetic evaluation. The genotype differences may be associated with evolutionary changes that have occurred in B. indicus as a part of their adaptation to tropical environments. Measures with potential to be used as genetic indicators of DFI were LWT measures in BRAH and TCOMP, ADG at ENTRY in TCOMP, and SP8 and SIMF at ENTRY in BRAH. Measures with potential to be genetic indicators of RFI were HH and ADG at ENTRY in BRAH, and IGF-I in both genotypes. Taller and faster-growing BRAH steers at ENTRY had genetically lower RFI. IGF-I was negatively genetically correlated with RFI whether IGF-I was measured at POSTW, ENTRY or EXIT. SRIB fatness at EXIT was strongly positively genetically correlated with RFI in TCOMP but only lowly correlated in BRAH. Fatness at ENTRY was lowly and negatively genetically correlated with RFI. The results emphasise the need for a population-specific understanding of trait relationships and of trait differences between measurement times if genetic indicator traits are to be utilised in genetic evaluation of RFI.