+ Site Statistics
+ Search Articles
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ PDF Full Text
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Translate
+ Recently Requested

Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation

Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation

Industrial Crops and Products 37(1): 118-123

Jatropha curcas seed-cake was evaluated for use as a solid state fermentation substrate for production of cellulolytic and xylanolytic enzymes by Aspergillus niger. Supplementation of the seedcake with 10% thatch grass (Hyperrhaenia sp.) resulted in a fivefold increase in xylanase production. Ammonium chloride supplementation increased production of xylanase by 13%. Under the same conditions, cellulase production was not influenced by supplementation with grass or the nitrogen sources used. Maximum xylanase was produced at 25 degrees C whilst cellulase was maximally produced at 40 degrees C. Highest xylanase activity was obtained when the cultures had an initial pH of 3 whereas cellulase was maximally produced at an initial pH of 5. Under optimised conditions, 6087 U and 3974 U of xylanase and cellulase respectively were obtained per gram of substrate. Zymograms of crude enzyme extracts showed six active bands ranging from 20 kDa to 43 kDa for cellulase and a 31 kDa active band for xylanase. B.V. All rights reserved.

(PDF emailed within 0-6 h: $19.90)

Accession: 066259554

Download citation: RISBibTeXText

DOI: 10.1016/j.indcrop.2011.11.024

Related references

Jatropha curcasseed cake as substrate for production of xylanase and cellulase byAspergillus nigerFGSCA733 in solid-state fermentation. 2012

Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresource Technology 153: 126-130, 2014

Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresource Technology 99(6): 1729-1735, 2007

Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. Journal of Bioscience and Bioengineering 117(2): 208-214, 2014

Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged SmF and solid state fermentation SSF. Food Science and Biotechnology 20(5): 1289-1298, 2011

Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresource Technology 102(7): 4815-4819, 2011

Bio-detoxification of phorbol esters and other anti-nutrients of Jatropha curcas seed cake by fungal cultures using solid-state fermentation. Applied Biochemistry and Biotechnology 172(5): 2747-2757, 2014

Study on Utilization of Detoxified Jatropha curcas Seed Cake Subjected to Solid State Fermentation as a Dietary Supplement in Wistar Rats. Recent Patents on Food, Nutrition and Agriculture 8(3): 190-198, 2016

Detoxification of Jatropha curcas seed cake in solid-state fermentation of newly isolated endophytic strain and nutrition assessment for its potential utilizations. International Biodeterioration & Biodegradation 109: 202-210, 2016

Enzyme production and profile by Aspergillus niger during solid substrate fermentation using palm kernel cake as substrate. Applied Biochemistry and Biotechnology 118(1-3): 73-79, 2004

Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresource Technology 96(11): 1223-1228, 2005

Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Bioresource Technology 102(2): 1722-1726, 2011

Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresource Technology 101(19): 7563-7569, 2010

Lipase production from Aspergillus niger by solid-state fermentation using gingelly oil cake. Process biochemistry 33(5): 505-511, 1998

Utilization of Jatropha deoiled seed cake for production of cellulases under solid-state fermentation. Bioprocess and Biosystems Engineering 35(8): 1343-1353, 2013