Section 67
Chapter 66,263

The Water Relations and Irrigation Requirements of Citrus (Citrus Spp.) : A REVIEW

Carr, M. K. V.

Experimental Agriculture 48(3): 347-377


ISSN/ISBN: 0014-4797
DOI: 10.1017/s0014479712000038
Accession: 066262229

Download citation:  

The results of research on the water relations and irrigation need of Citrus spp. are collated and reviewed in an attempt to link fundamental studies on crop physiology to drought mitigation and irrigation practices. Background information is given on the centres of origin (south-east Asia) and of production of citrus (areas with subtropical Mediterranean-type climates). The effects of water stress on the development processes of the crop are summarised followed by reviews of the plant water relations, crop water requirements, water productivity and irrigation systems. The topic is complicated by the diversity of species and cultivars (including rootstocks) that are embraced within Citrus spp. The effects of water availability on vegetative growth are understood in general terms, but the relationships have not yet been quantified. Similarly, the need for a 'rest period' to induce flowering is understood, but its magnitude (in terms of a drought stress index or day-degrees) does not appear to have been specified with precision. Again, the effects of drought on flower and fruit formation and retention are understood in general terms, but the relationships have not been quantified in useful ways for specific cultivars. Rooting depth and distribution have only been described in a limited number of situations. Environmental factors influencing stomatal conductances are generally well described and relationships with some growth processes established. Compared with other crops, low stomatal/ canopy conductance restricts water use of Citrus spp. Some (limited) progress has been made in quantifying crop water requirements in specific conditions. Despite many recent attempts to specify how little water can be applied at specific growth stages to optimise water productivity through regulated deficit irrigation, no consensus view has emerged. The yield response to 'full' irrigation is of the order 6-7 kg fresh fruit m(-3) as a result of an increase in the number of fruit of marketable size. There are also improvements in fruit quality. The most effective way of irrigating a citrus orchard is with a microirrigation system (drip or microsprinklers), but both methods require answers to the question: what proportion of the root zone needs to be irrigated? Both methods, especially drip, allow water to be applied (with fertigation) at very frequent intervals (including several times a day), although formal evidence of the benefits to be obtained from this level of intensification is lacking.

PDF emailed within 0-6 h: $19.90