Section 68
Chapter 67,034

Quantification of soil organic carbon stock in urban soils using visible and near infrared reflectance spectroscopy (Vnirs) in situ or in laboratory conditions

Allory, V.; Cambou, A.; Moulin, P.; Schwartz, C.; Cannavo, P.; Vidal-Beaudet, L.; Barthès, B.G.

Science of The Total Environment 686: 764-773


ISSN/ISBN: 0048-9697
DOI: 10.1016/j.scitotenv.2019.05.192
Accession: 067033454

Download citation:  

Urban soils, like other soils, can be sink or source for atmospheric carbon dioxide, and due to urban expansion, are receiving increasing attention. Studying their highly variable attributes requires high-density sampling, which can hardly be achieved using conventional approaches. The objective of this work was to determine the ability of visible and near infrared reflectance spectroscopy (VNIRS) to quantify soil organic carbon (SOC) concentration (gC kg-1) and stock (gC dm-3, or MgC ha-1 for a given depth layer) in parks and sealed soils of two French cities, Marseille and Nantes, using spectra collected on pit walls or in laboratory conditions (air dried, 2 mm sieved samples). Better VNIRS predictions were achieved using laboratory than in situ spectra (R2 ≈ 0.8-0.9 vs. 0.7-0.8 in validation), and for sample SOC concentration than stock (R2val up to 0.83 in situ and 0.95 in the laboratory vs. 0.78 and 0.89, respectively). Stock was conventionally calculated according to four methods that variably account for coarse particles (>2 mm); and it was better predicted when coarse particles were not taken into account. This was logical using laboratory spectra, collected on 2 mm sieved samples; but concerning in situ spectra, this suggested the operator tended to put the spectrometer beside the coarsest particles during spectrum acquisition. This point is worth considering for urban soils, often rich in coarse particles. Stocks were then aggregated at the profile level: SOC stock prediction was more accurate at profile than sample level when using laboratory spectra (R2val = 0.94 vs. 0.89, respectively), probably due to uncertainty compensation; but this was not the case when using in situ spectra, possibly because samples collected for SOC analysis and corresponding VNIRS scans were not at the exact same location. This work demonstrates VNIRS usefulness for quantifying SOC stock time- and cost-effectively, in urban soils especially.

PDF emailed within 0-6 h: $19.90