+ Site Statistics
+ Search Articles
+ PDF Full Text Service
How our service works
Request PDF Full Text
+ Follow Us
Follow on Facebook
Follow on Twitter
Follow on LinkedIn
+ Subscribe to Site Feeds
Most Shared
PDF Full Text
+ Translate
+ Recently Requested

Physiological characteristics and toxin production of Microcystis aeruginosa (Cyanobacterium) in response to Dom in anaerobic digestion effluent



Physiological characteristics and toxin production of Microcystis aeruginosa (Cyanobacterium) in response to Dom in anaerobic digestion effluent



Science of The Total Environment 685: 902-910




Please choose payment method:






(PDF emailed within 0-6 h: $19.90)

Accession: 067033895

Download citation: RISBibTeXText

DOI: 10.1016/j.scitotenv.2019.06.239


Related references

Toxin production in batch cultures of freshwater cyanobacterium Microcystis aeruginosa. Bulletin of Environmental Contamination and Toxicology 67(3): 339-346, 2001

Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquatic Toxicology 78(1): 66-73, 2006

Evolutionary changes in growth rate and toxin production in the cyanobacterium Microcystis aeruginosa under a scenario of eutrophication and temperature increase. Microbial Ecology 62(2): 265-273, 2011

Evolutionary Changes in Growth Rate and Toxin Production in the Cyanobacterium Microcystis aeruginosa Under a Scenario of Eutrophication and Temperature Increase. Microbial Ecology 62(2): 265-273, 2011

Interstrain variability in toxin production in populations of the cyanobacterium Microcystis aeruginosa from water-supply reservoirs of Andalusia and lagoons of Doana National Park (southern Spain). Phycologia 42(3): 269-274, 2003

Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl. Environmental Science and Pollution Research International 24(8): 7752-7763, 2017

Iron uptake by bloom-forming freshwater cyanobacterium Microcystis aeruginosa in natural and effluent waters. Environmental Pollution 247: 392-400, 2019

Instability and variable toxicity of HBP-Tx, a toxin in the cyanobacterium Microcystis aeruginosa. Toxicon 22(1): 107-114, 1984

Injury to hepatocytes induced by a peptide toxin from the cyanobacterium Microcystis aeruginosa. Toxicon 25(11): 1235-1239, 1987

Cell selective cytotoxicity of a peptide toxin from the cyanobacterium Microcystis aeruginosa. Biochimica et Biophysica Acta 930(3): 304-310, 1987

The structure of cyanoginosin la a cyclic heptapeptide toxin from the cyanobacterium microcystis aeruginosa. Journal of the Chemical Society Perkin Transactions I (10): 2311-2318, 1984

Cryopreservation of a myovirus infecting the toxin-producing cyanobacterium Microcystis aeruginosa. Microbes and Environments 22(3): 297-299, 2007

Evidence for a role of glutathione in the toxicity of microcystin lr a toxin from the cyanobacterium microcystis aeruginosa. Toxicon 27(1): 39-40, 1989

Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Research 54: 188-198, 2014

Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa. Aquatic Toxicology 178: 72-79, 2016