Orbits Asymptotic to an Isosceles-Triangle Solution of the Problem of Three Bodies
Buchanan, D.
Proceedings of the London Mathematical Society s2-17(1): 54-74
1918
DOI: 10.1112/plms/s2-17.1.54
Accession: 067634210
Full Text Article emailed within 0-6 h: $19.90
Related References
Buchanan, D. 1915: A new isosceles-triangle solution of the three body problem Transactions of the American Mathematical Society 16(3): 259-274Mitsuru Shibayama; Kazuyuki Yagasaki 2011: Families of symmetric relative periodic orbits originating from the circular Euler solution in the isosceles three-body problem Celestial Mechanics and Dynamical Astronomy 110(1): 53-70
Karabulut, H.; Ipci, D.; Cinar, C. 2016: Numerical solution of fully developed heat transfer problem with constant wall temperature and application to isosceles triangle and parabolic ducts Applied Thermal Engineering 102: 115-124
Buchanan, D. 1915: Oscillations Near One of the Isosceles-Triangle Solutions of the Three Body Problem Proceedings of the London Mathematical Society s2_14(1): 278-300
Orlov, V.V.; Petrova, A.V.; Martynova, A.I. 2002: Classification of orbits in the plane isosceles three-body problem Monthly Notices of the Royal Astronomical Society 333(3): 495-500
Corbera, M.; Llibre, J. 2004: Families of periodic orbits for the spatial isosceles 3-body problem Siam Journal on Mathematical Analysis 35(5): 1311-1346
Chen, N. 2013: Periodic brake orbits in the planar isosceles three-body problem Nonlinearity 26(10): 2875-2898
Perdomo, O.M. 2017: A Bifurcation in the Family of Periodic Orbits for the Spatial Isosceles 3 Body Problem Qualitative Theory of Dynamical Systems 17(2): 411-428
Hagel, J. 1991: An approximate integral and solution for eccentric planetary type orbits in the restricted problem of three bodies Celestial Mechanics and Dynamical Astronomy 50(3): 209-230
Shibayama, M.; Yagasaki, K. 2009: Heteroclinic connections between triple collisions and relative periodic orbits in the isosceles three-body problem Nonlinearity 22(10): 2377-2403
Ouyang, T.; Yan, D. 2017: Variational properties and linear stabilities of spatial isosceles orbits in the equal-mass three-body problem Discrete and Continuous Dynamical Systems 37(7): 3989-4018
Barantsev, R.G.; Engelgart, V.N. 1984: Asymptotic solution of the problem of hypersonic perfect gas flow past blunted bodies Archives of Mechanics 36(4): 603-608
rdi, B. 1977: An asymptotic solution for the Trojan case of the plane elliptic restricted problem of three bodies Celestial Mechanics 15(3): 367-383
Nohara, Y.; Hisaoka, A. 1957: Comparison between Rectangular Isosceles Triangle Coordinate (MAEKAWA) and Equilateral Triangle Scheme (EINTHOVEN-WILSON) Japanese Circulation Journal 21(7): 351-354
Shi, B.; Liu, R.; Yan, D.; Ouyang, T. 2017: Multiple Periodic Orbits Connecting a Collinear Configuration and a Double Isosceles Configuration in the Planar Equal-Mass Four-Body Problem Advanced Nonlinear Studies 17(4): 819-835
Cabral, H.E. 1987: The masses in an isosceles solution of the three-body problem Celestial Mechanics 41(1-4): 175-177
Das, P.; Juyal, A.; Moody, D. 2017: Integral Isosceles Triangle-Parallelogram and Heron triangle-Rhombus Pairs with a Common Area and Common Perimeter Journal of Number Theory 180: 208-218
Schmidt, D.S. 1972: Families of Periodic Orbits in the Restricted Problem of Three Bodies Connecting Families of Direct and Retrograde Orbits SIAM Journal on Applied Mathematics 22(1): 27-37
Papadakis, K.E. 2009: Asymptotic orbits in the (N+1)-body ring problem Astrophysics and Space Science 323(3): 261-272
Papadakis, K. 2007: Asymptotic orbits in the restricted four-body problem Planetary and Space Science 55(10): 1368-1379