Oscillations Near One of the Isosceles-Triangle Solutions of the Three Body Problem
Buchanan, D.
Proceedings of the London Mathematical Society s2_14(1): 278-300
1915
DOI: 10.1112/plms/s2_14.1.278
Accession: 067635432
Full Text Article emailed within 0-6 h: $19.90
Related References
Buchanan, D. 1915: A new isosceles-triangle solution of the three body problem Transactions of the American Mathematical Society 16(3): 259-274Lúcia de Fatima Brandão; Claudio Vidal 2008: Periodic Solutions of the Elliptic Isosceles Restricted Three-body Problem with Collision Journal of Dynamics and Differential Equations 20(2): 377-423
de Fátima Brandão Dias, L.; Vidal, C. 2009: Periodic Solutions of the Elliptic Isosceles Restricted Three-Body Problem with Collision by the Averaging Method Qualitative Theory of Dynamical Systems 8(2): 329-347
Mateus, E.; Venturelli, A.; Vidal, C. 2013: Quasiperiodic Collision Solutions in the Spatial Isosceles Three-Body Problem with Rotating Axis of Symmetry Archive for Rational Mechanics and Analysis 210(1): 165-176
Buchanan, D. 1918: Orbits Asymptotic to an Isosceles-Triangle Solution of the Problem of Three Bodies Proceedings of the London Mathematical Society s2-17(1): 54-74
Roberts, G.E. 2002: Linear Stability of the Elliptic Lagrangian Triangle Solutions in the Three-Body Problem Journal of Differential Equations 182(1): 191-218
Nohara, Y.; Hisaoka, A. 1957: Comparison between Rectangular Isosceles Triangle Coordinate (MAEKAWA) and Equilateral Triangle Scheme (EINTHOVEN-WILSON) Japanese Circulation Journal 21(7): 351-354
Karabulut, H.; Ipci, D.; Cinar, C. 2016: Numerical solution of fully developed heat transfer problem with constant wall temperature and application to isosceles triangle and parabolic ducts Applied Thermal Engineering 102: 115-124
Nomikos, D.G.; Papageorgiou, V.G. 2009: Non-integrability of the Anisotropic Stormer Problem and the Isosceles Three-Body Problem Physica. D 238(3): 273-289
Das, P.; Juyal, A.; Moody, D. 2017: Integral Isosceles Triangle-Parallelogram and Heron triangle-Rhombus Pairs with a Common Area and Common Perimeter Journal of Number Theory 180: 208-218
Cabral, H.E. 1987: The masses in an isosceles solution of the three-body problem Celestial Mechanics 41(1-4): 175-177
Arredondo, J.A.; Pérez-Chavela, E.; Stoica, C. 2014: Dynamics in the Schwarzschild Isosceles Three Body Problem Journal of Nonlinear Science 24(6): 997-1032
Moeckel, R. 1984: Heteroclinic phenomena in the isosceles three-body problem Siam Journal on Mathematical Analysis 15(5): 857-876
Lacomba, E.A.; Losco, L. 1980: Triple collisions in the isosceles 3-body problem Bulletin of the American Mathematical Society 3(1): 710-714
Alvarez-Ramírez, M.; Delgado, J. 2003: Blow up of the isosceles 3--body problem with an infinitesimal mass Discrete-Continuous Dynamical Systems - A 9(5): 1149-1173
Devaney, R.L. 1980: Triple collision in the planar isosceles three body problem Inventiones Mathematicae 60(3): 249-267
Orlov, V.V.; Petrova, A.V.; Martynova, A.I. 2002: Classification of orbits in the plane isosceles three-body problem Monthly Notices of the Royal Astronomical Society 333(3): 495-500
Atela, P.; McLachlan, R.I. 1994: Global Behavior of the Charged Isosceles Three-Body Problem International Journal of Bifurcation and Chaos 04(04): 865-884
Zare, K..; Chesley, S.. 1998: Order and chaos in the planar isosceles three-body problem Chaos 8(2): 475-494
Simo, C.; Martinez, R. 1987: Qualitative study of the planar isosceles three-body problem Celestial Mechanics 41(1-4): 179-251