A Phosphosite Screen Identifies Autocrine Tgf--Driven Activation of Protein Kinase R as a Survival-Limiting Factor for Eosinophils

Goplen, N.; Gorska, M.M.; Stafford, S.J.; Rozario, S.; Guo, L.; Liang, Q.; Alam, R.

The Journal of Immunology 180(6): 4256-4264


DOI: 10.4049/jimmunol.180.6.4256
Accession: 068490984

Download citation:  

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

The differential usage of signaling pathways by chemokines and cytokines in eosinophils is largely unresolved. In this study, we investigate signaling similarities and differences between CCL11 (eotaxin) and IL-5 in a phosphosite screen of human eosinophils. We confirm many previously known pathways of cytokine and chemokine signaling and elucidate novel phosphoregulation in eosinophils. The signaling molecules that were stimulated by both agents were members of the ERK1/2 and p38 MAPK pathways and their downstream effectors such as RSK and MSK1/2. Both agents inhibited S6 kinase, protein kinase Cepsilon, and glycogen synthase kinase 3 alpha and beta. The molecules that were differentially regulated include STATs and protein kinase R (PKR). One of the chief findings in this investigation was that PKR and eukaryotic initiation factor 2alpha are phosphorylated under basal conditions in eosinophils and neutrophils. This basal phosphorylation was linked to autocrine secretion of TGF-beta in eosinophils. TGF-beta directly activates PKR in eosinophils. Basal phosphorylation of PKR was inhibited by incubation of eosinophils with a neutralizing anti-TGF-beta Ab suggesting its physiological importance. We show that inhibition of PKR activity prolongs eosinophil survival. The eosinophil survival factor IL-5 strongly suppresses phosphorylation of PKR. The biological relevance of IL-5 inhibition of phospho-PKR was established by the observation that ex vivo bone marrow-derived eosinophils from OVA-immunized mice had no PKR phosphorylation in contrast to the high level of phosphorylation in sham-immunized mice. Together, our findings suggest that survival of eosinophils is in part controlled by basal activation of PKR through autocrine TGF-beta and that this could be modulated by a Th2 microenvironment in vivo.