Low Molecular Weight Hyaluronic Acid Increases the Self-Defense of Skin Epithelium by Induction of -Defensin 2 via Tlr2 and Tlr4

Gariboldi, S.; Palazzo, M.; Zanobbio, L.; Selleri, S.; Sommariva, M.; Sfondrini, L.; Cavicchini, S.; Balsari, A.; Rumio, C.

The Journal of Immunology 181(3): 2103-2110

2008


DOI: 10.4049/jimmunol.181.3.2103
Accession: 068491114

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
In sites of inflammation or tissue injury, hyaluronic acid (HA), ubiquitous in the extracellular matrix, is broken down into low m.w. HA (LMW-HA) fragments that have been reported to activate immunocompetent cells. We found that LMW-HA induces activation of keratinocytes, which respond by producing beta-defensin 2. This production is mediated by TLR2 and TLR4 activation and involves a c-Fos-mediated, protein kinase C-dependent signaling pathway. LMW-HA-induced activation of keratinocytes seems not to be accompanied by an inflammatory response, because no production of IL-8, TNF-alpha, IL-1beta, or IL-6 was observed. Ex vivo and in vivo treatments of murine skin with LMW-HA showed a release of mouse beta-defensin 2 in all layers of the epidermal compartment. Therefore, the breakdown of extracellular matrix components, for example after injury, stimulates keratinocytes to release beta-defensin 2, which protects cutaneous tissue at a time when it is particularly vulnerable to infection. In addition, our observation might be important to open new perspectives in the development of possible topical products containing LMW-HA to improve the release of beta-defensins by keratinocytes, thus ameliorating the self-defense of the skin for the protection of cutaneous tissue from infection by microorganisms.