PkcIi Augments Nf-B-Dependent Transcription at the Ccl11 Promoter via p300/Cbp-Associated Factor Recruitment and Histone H4 Acetylation

Clarke, D.L.; Sutcliffe, A.; Deacon, K.; Bradbury, D.; Corbett, L.; Knox, A.J.

The Journal of Immunology 181(5): 3503-3514


DOI: 10.4049/jimmunol.181.5.3503
Accession: 068491149

Download citation:  

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

The transcription factor NF-kappaB plays a pivotal role in regulating inflammatory gene expression. Its effects are optimized by various coactivators, including histone acetyltransferases (HATs) such as CREB-binding protein/p300 and p300/CBP-associated factor (p/CAF). The molecular mechanisms regulating cofactor recruitment are poorly understood. In this study, we describe a novel role for protein kinase C (PKC) betaIotaIota in augmenting NF-kappaB-mediated TNF-alpha-induced transcription of the target gene CCL11 in human airway smooth muscle cells by phosphorylating the HAT p/CAF. Studies using reporters, overexpression strategies, kinase-dead and HAT-defective mutants, and chromatin immunoprecipitation showed that PKCbetaII activation was not involved in NF-kappaB translocation, but facilitated NF-kappaB-mediated CCL11 transcription by colocalizing with and phosphorylating p/CAF, and thereby acetylating histone H4 and promoting p65 association with the CCL11 promoter. The effect was dependent on p/CAF's HAT activity. Furthermore, mouse embryonic fibroblasts from PKCbeta knockout mice showed markedly reduced TNF-alpha-induced CCL11 expression and NF-kappaB reporter activity that was restored on PKCbetaII overexpression, suggesting a critical role for this pathway. These data suggest a novel important biological role for PKCbetaIotaIota in NF-kappaB-mediated CCL11 transcription by p/CAF activation and histone H4 acetylation.