Follistatin-Like Protein 1 Promotes Arthritis by Up-Regulating Ifn-

Clutter, S.D.; Wilson, D.C.; Marinov, A.D.; Hirsch, R.

The Journal of Immunology 182(1): 234-239

2009


DOI: 10.4049/jimmunol.182.1.234
Accession: 068491217

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
Follistatin-like protein-1 (FSTL-1) is a poorly characterized protein that is up-regulated in the early stage of collagen-induced arthritis and that exacerbates arthritis when delivered by gene transfer. The current study was designed to determine the mechanism by which FSTL-1 promotes arthritis. FSTL-1 was injected into mouse paws, resulting in severe paw swelling associated with up-regulation of IFN-gamma transcript and the IFN-gamma-induced chemokine, CXCL10. Mice depleted of T cells were protected. A central role for IFN-gamma was confirmed by the finding that mice deficient in IFN-gamma failed to exhibit paw swelling in response to injection of FSTL-1. Furthermore, IFN-gamma secretion from mouse spleen cells exposed to a weak TCR signal was increased 5-fold in the presence of FSTL-1. FSTL-1 could be induced by innate immune signals, including TLR4 agonists and the arthritogenic cytokine, IL-1beta, via an NFkappaB pathway. Finally, FSTL-1 was found to be overexpressed in human arthritis and its neutralization inhibited murine collagen-induced arthritis and suppressed IFN-gamma and CXCL10 production in arthritic joints. These findings demonstrate that FSTL-1 plays a critical role in arthritis by enhancing IFN-gamma signaling pathways and suggest a mechanism by which FSTL-1 bridges innate and adaptive immune responses.