# Non-finitely generated relatively hyperbolic groups and Floyd quasiconvexity

##### Gerasimov, V.; Potyagailo, L.

#### Groups, Geometry, and Dynamics 9(2): 369-434

#### 2015

DOI: 10.4171/ggd/317

Accession: 068496688

##### Article/Abstract emailed within 0-6 h

*Payments are secure & encrypted*

#### Related References

Goldstein, R.Z.; Turner, E.C. 1985:**Monomorphisms of finitely generated free groups have finitely generated equalizers**

*Inventiones Mathematicae 82(2): 283-289*

Martínez-Pedroza, E. 2011:

**On quasiconvexity and relatively hyperbolic structures on groups**

*Geometriae Dedicata 157(1): 269-290*

Kapovich, I. 1999:

**A non-quasiconvexity embedding theorem for hyperbolic groups**

*Mathematical Proceedings of the Cambridge Philosophical Society 127(3): 461-486*

Krstic, S. 1992:

**Finitely Generated Virtually Free Groups have Finitely Presented Automorphism Group**

*Proceedings of the London Mathematical Society s3-64(1): 49-69*

Tschantz, S.T. 1988:

**A finitely presented HNN-extension example: Non-finitely generated groups, and an application of small cancellation theory**

*Journal of Pure and Applied Algebra 52(1-2): 153-164*

Scott, G.P. 1973:

**Finitely Generated 3-Manifold Groups are Finitely Presented**

*Journal of the London Mathematical Society s2-6(3): 437-440*

Hirshon, R. 1986:

**Finitely generated groups L with L ≈ L × M, M ≠ 1, M finitely presented**

*Journal of Algebra 99(1): 232-238*

Jensen, C.U.; Prestel, A. 1996:

**Finitely generated pro-p-groups as Galois groups of maximalp-extensions of function fields over ℚ q**

*Manuscripta Mathematica 90(1): 225-238*

Endimioni, G. 1997:

**A characterization of nilpotent-by-finite groups in the class of finitely generated soluble groups**

*Communications in Algebra 25(4): 1159-1168*

Logan, A.D. 2015:

**On the outer automorphism groups of finitely generated, residually finite groups**

*Journal of Algebra 423: 890-901*

Gumber, D.; Singh, S. 2017:

**Automorphism groups of finitely generated groups that are isomorphic to group of inner automorphisms**

*Quaestiones Mathematicae 40(8): 1015-1021*

Du Sautoy, M.P.F. 1993:

**Finitely generated groups, p-adic analytic groups and Poincaré series**

*Annals of Mathematics 137(3): 639-670*

du Sautoy, M.P.F. 1990:

**Finitely generated groups, 𝑝-adic analytic groups, and Poincaré series**

*Bulletin of the American Mathematical Society 23(1): 121-126*

Hou, Y. 2019:

**All finitely generated Kleinian groups of small Hausdorff dimension are classical Schottky groups**

*Mathematische Zeitschrift 294(3-4): 901-950*

Allenby, R.B.J.T.; Kim, G.; Tang, C.Y. 2005:

**Residual Finiteness of Outer Automorphism Groups of Finitely Generated Non-Triangle Fuchsian Groups**

*International Journal of Algebra and Computation 15(01): 59-72*

Thomas, S. 2018:

**Topological full groups of minimal subshifts and the classification problem for finitely generated complete groups**

*Groups, Geometry, and Dynamics 13(1): 327-347*

Soifer, G.A.; Venkataramana, T.N. 2000:

**Finitely generated profinitely dense free groups in higher rank semi-simple groups**

*Transformation Groups 5(1): 93-100*

Vershik, A.M.; Malyutin, A.V. 2018:

**The absolute of finitely generated groups: I. Commutative (semi)groups**

*European Journal of Mathematics 4(4): 1476-1490*

Kochloukova, D.H. 1999:

**A New Characterisation of m-Tame Groups Over Finitely Generated Abelian Groups**

*Journal of the London Mathematical Society 60(3): 802-816*

Nikolov, N.; Segal, D. 2007:

**On finitely generated profinite groups, II: products in quasisimple groups**

*Annals of Mathematics 165(1): 239-273*