Hereditary neuropathy: recent advance

Nakagawa, M.

Rinsho Shinkeigaku 48(11): 1019-1022

2008


ISSN/ISBN: 0009-918X
DOI: 10.5692/clinicalneurol.48.1019
Accession: 068510560

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
Hereditary neuropathies are classified into Charcot-Marie-Tooth disease (CMT), familial amyloid polyneuropathy (FAP), hereditary motor neuropathies (HMN) and hereditary sensory (and autonomic) neuropathies (HSAN). CMTs are furthermore classified into demyelinating neuropathies (CMT1), axonal neuropathies (CMT2) and intermediate form. Duplication of PMP22 (CMT1A) accounts for about 70% of CMT1 and MFN2 mutations account for 25% of CMT2. Genes involved in phosphoinositide regulation cause CMT4; MTMR2 mutation in CMT 4B1 and MTMR13/SBF2 mutation in CMT4B2. In addition to these genes, FIG4, which is a causative gene of pale tremor mouse, is newly identified as a gene for CMT4J. MFN2 and GDAP1 cause CMT2 or CMT4. These genes regulate mitochondrial fusion and fission. Altered axonal mitochondrial transport is suggested as the pathogenesis of the CMT. In animal model with pmp22 duplication, ascorbic acid seems to be effective to prevent disease progression. Nationwide trial of ascorbic acid therapy for CMT1A is now ongoing by the intractable neuropathy study group. Curcumin treatment educes apoptosis of cells that express PMP22 point mutation and partially mitigates the severe neuropathy phenotype of Trembler-J mouse model in a dose-dependent manner. Curcumin treatment may have a potential therapeutic role in CMT with PMP22 point mutation in humans. The high throughput system of diagnosis for CMT has been developed by employing a resequencing array system.