Leghemoglobin. An electron paramagnetic resonance and optical spectral study of the free protein and its complexes with nicotinate and acetate

Appleby, C.A.; Blumberg, W.E.; Peisach, J.; Wittenberg, B.A.; Wittenberg, J.B.

Journal of Biological Chemistry 251(19): 6090-6096


ISSN/ISBN: 0021-9258
PMID: 184092
Accession: 068523275

Download citation:  

Article/Abstract emailed within 1 workday
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Electron paramagnetic resonance (EPR) and optical spectra are used as probes of the heme and its ligands in ferric and ferrous leghemoglobin. The proximal ligand to the heme iron atom of ferric soybean leghemoglobin is identified as imidazole by comparison of the EPR of leghemoglobin hydroxide, azide, and cyanide with the corresponding derivatives of human hemoglobin. Optical spectra show that ferric soybean leghemoglobin near room temperature is almost entirely in the high spin state. At 77 K the optical spectrum is that of a low spin compound, while at 1.6 K the EPR is that of a low spin form resembling bis-imidazole heme. Acetate binds to ferric leghemoglobin to form a high spin complex as judged from the optical spectrum. The EPR of this complex is that of high spin ferric heme in a nearly axial environment. The complexes of ferrous leghemoglobin with substituted pyridines exhibit optical absorption maxima near 685 nm, whose absorption maxima and extinctions are strongly dependent on the nature of the substitutents of the pyridine ring; electron withdrawing groups on the pyridine ring shift the absorption maxima to lower energy. A crystal field analysis of the EPR of nicotinate derivatives of ferric leghemoblobin demonstrates that the pyridine nitrogen is also bound to the heme iron in the ferric state. These findings lead us to picture leghemoglobin as a somewhat flexible molecule in which the transition region between the E and F helices may act as a hinge, opening a small amount at higher temperature to a stable configuration in which the protein is high spin and can accommodate exogenous ligand molecules and closing at low temperature to a second stable configuration in which the protein is low spin and in which close approach of the E helix permits the distal histidine to become the principal sixth ligand.