The nitrogen handling characteristics of white clover (Trifolium repens L.) cultivars and a perennial ryegrass (Lolium perenne L.) cultivar

Griffith, G.S.; Cresswell, A.; Jones, S.; Allen, D.K.

Journal of Experimental Botany 51(352): 1879-1892

2000


ISSN/ISBN: 0022-0957
PMID: 11113166
DOI: 10.1093/jexbot/51.352.1879
Accession: 068739272

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
Ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) have contrasting responses to soil mineral N availability and clover has the ability to fix atmospheric N(2) symbiotically. It has been hypothesized that these differences are the key to understanding grass-clover coexistence and vegetative dynamics in pastures. However, the whole plant response of clover and ryegrass to mineral N availability has not been fully characterized and inter-cultivar variability in the N-handling dynamics of clover has not been assessed. A detailed experimental study to address these issues was undertaken. For all clover cultivars and ryegrass, mass specific mineral N uptake rates (of whole plants) were similar saturating functions of mineral N availability. For all clover cultivars total N assimilation rates, whole plant C : N ratios and root : shoot ratios were independent of mineral N availability. Clover growth rates were also independent of mineral N availability except for a slight (<10%) reduction at very low N availability levels. Specific N(2) fixation rate (whole plant) was precisely controlled to ensure fixation balanced the deficit between mineral N uptake and the total N assimilation required to maintain constant whole plant C : N ratio. There was always a deficit between N uptake and the total N assimilation required to maintain C : N ratio. Consequently, some N(2) fixation remained engaged even at high mineral N availability levels. All inter-cultivar variation in N(2) fixation dynamics could be attributed to variations in growth rate. Clover mass specific growth rate declined as plant size increased. Ryegrass specific growth rate, whole plant C : N ratio and root : shoot ratio were dependent on N availability. Increased N availability led to increased growth rate and decreased C : N and root : shoot ratios. Specific growth rate was also dependent on plant size, growth rate declining as plant size increased. It is concluded that clover inter-cultivar variation in field performance is unlikely to be a consequence of variation in N-handling characteristics. Inter-cultivar differences in growth rate are likely to be a much more important source of variation.