Adsorptive Removal of Acetaldehyde from Propylene Oxide Produced by the Hydrogen Peroxide to Propylene Oxide Process

Li, Y.; Li, Y.; Feng, X.; Chai, Y.; Liu, C.

Acs Omega 3(11): 15272-15280

2018


ISSN/ISBN: 2470-1343
PMID: 31458188
DOI: 10.1021/acsomega.8b02297
Accession: 069282905

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
Adsorption method was first introduced into the propene oxide production via hydrogen peroxide process to remove the microimpurity in the propylene oxide (PO) product solution. It could replace the reactive distillation in separating acetaldehyde with less energy consumption and PO loss. A series of adsorbents (e.g., 3A, 4A, 5A, 10X, and Y) are first used to remove the impurity (i.e., acetaldehyde). It is found that 5A molecular sieves shows the best performance due to uniform porous channels with suitable pore size. Various techniques such as X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared, and N2 physisorption are employed to investigate the structural properties of the adsorbent. Furthermore, effects of space velocity and temperature are also investigated. Cyclic desorption and adsorption tests indicate the PO yield is 92.2%, and 96.3% of acetaldehyde was removed. The acetaldehyde concentration of PO product was 0.0187%, indicating this method can produce industrial-quality PO that meets the first-level technical requirements.