Section 70
Chapter 69,481

Apoptotic Induction and Anti-Migratory Effects of Rhazya Stricta Fruit Extracts on a Human Breast Cancer Cell Line

Al-Zharani, M.; Nasr, F.A.; Abutaha, N.; Alqahtani, A.S.; Noman, O.M.; Mubarak, M.; Wadaan, M.A.

Molecules 24(21)


ISSN/ISBN: 1420-3049
PMID: 31683960
DOI: 10.3390/molecules24213968
Accession: 069480363

Download citation:  

Rhazya stricta is a medicinal plant that is widely used in Saudi folklore medicine for treatment of various diseases. R. stricta fruit powder was sequentially extracted with n-hexane, chloroform, ethyl acetate, and methanol using a Soxhlet extractor. The cytotoxic effects of these fractions on human breast cancer cells (MDA-MB-231 and MCF-7) and non-tumorigenic control cells (MCF-10A) were evaluated via cell viability measurements, microscopy, gene expression, and migration assays. Moreover, the effect of the most promising extract on 7,12-dimethyl-benz[a]anthracene (DMBA)-induced breast cancer was investigated in rats. The promising extract was also subjected to gas chromatography-mass spectrometry. Fruit extracts of R. stricta were significantly cytotoxic toward all tested cell lines, as demonstrated by MTT and LDH assays. Treatment of MDA-MB-231 cells with fruit ethyl acetate fraction (RSF EtOAc) increased expression 11of P53, Bax and activation of caspase 3/7. A cell migration scratch assay demonstrated that extracts at non-cytotoxic concentrations exerted a potent anti-migration activity against the highly invasive MDA-MB-231 cell line. Moreover, RT-PCR results showed that RSF EtOAc significantly downregulated MMP-2 and MMP-9 expression, which play an important role in breast cancer metastasis. Histological studies of breast tissue in experimental animals showed a slight improvement in tissue treated with fruit ethyl acetate extract. GC-MS chromatogram showed thirteen peaks with major constituents were camphor, trichosenic acid and guanidine. Our current study demonstrates that fruit extracts of R. stricta are cytotoxic toward breast cancer cell lines through apoptotic mechanisms.

Full Text Article emailed within 0-6 h: $19.90