Enhancing PCR Capacity to Detect 'Candidatus Liberibacter asiaticus' Utilizing Whole Genome Sequence Information

Bao, M.; Zheng, Z.; Sun, X.; Chen, J.; Deng, X.

Plant Disease 104(2): 527-532


ISSN/ISBN: 0191-2917
PMID: 31790641
DOI: 10.1094/pdis-05-19-0931-re
Accession: 069573749

Download citation:  

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

'Candidatus Liberibacter asiaticus' (CLas) is an unculturable α-proteobacterium associated with citrus Huanglongbing (HLB; yellow shoot disease). PCR procedures that accurately confirm or exclude CLas infection in citrus tissue/Asian citrus psyllid (ACP) samples are critical for HLB management. When CLas was described in 1994, a 23-bp signature oligonucleotide sequence (OI1) in the 16S rRNA gene (rrs, three genomic copies) was identified based on Sanger sequencing. OI1 contains single nucleotide polymorphisms (SNPs) distinguishing CLas from non-CLas species. The SNPs were used to design the primer HLBas, a key primer for a commonly used TaqMan PCR system (HLBas-PCR) for CLas detection. Recent developments in next-generation sequencing technology have led to the identification of 15 CLas whole genome sequence strains (WGSs). Analyses of CLas WGSs have generated a significant amount of biological information that could help to improve CLas detection. Utilizing the WGS information, this study re-evaluated the sequence integrity of OI1/HLBas and identified and/or confirmed a missing nucleotide G in the two primers. Replacement primers for OI1 and HLBas are proposed. At low cycle threshold (Ct) values (e.g., <30), HLBas-PCR remained reliable in CLas determination. At high Ct values (e.g., >30), HLBas-PCR alone was unreliable in differentiating whether samples contain low CLas titers or whether CLas is not present. The availability of ribonucleotide reductase (RNR)-PCR derived from the five-copy nrdB gene helped to resolve this problem. To further enhance low CLas titer detection, a 4CP-PCR system, based on a four-copy genomic locus, was developed. Evaluation of 107 HLB samples (94 citrus and 13 ACP) showed that 4CP-PCR was more sensitive than HLBas-PCR and shared similar sensitivity with RNR-PCR.