Section 70
Chapter 69,638

Stoichiometric Characteristics of Purple Sloping Cropland Under Long-term Fertilization and Cultivation

Du, Y.-N.; Li, T.-Y.; He, B.-H.; He, X.-R.; Fu, S.

Huan Jing Ke Xue= Huanjing Kexue 41(1): 394-402


ISSN/ISBN: 0250-3301
PMID: 31854942
Accession: 069637260

Download citation:  

Clarification of the effects of long-term fertilization and cultivation on soil organic carbon (C), nitrogen (N), phosphorus (P), and potassium (K) contents and their stoichiometric ratios can contribute to existing research on the C and nutrient biogeochemical cycles and their interacting mechanisms. Such information is also of great significance to fertilization management and for the control of non-point pollution. Fifteen plots (8 m long, 4 m wide) were set up on a representative purple hillslope (15°). Five treatments (three replications) were used on the plots:i) no fertilizer with downslope cultivation (CK), ii) combined application of manure and fertilizer with downslope cultivation (T1), iii) chemical fertilizers with downslope cultivation (T2), iv) chemical fertilizer with increasing fertilization with downslope cultivation (T3), and v) chemical fertilizer with contour cultivation (T4). The C, N, P and K contents and their ratios in the five treatments corresponding to 0-10 cm and 10-20 cm soil depths were compared. The results showed that C, N and P contents for the different treatments were differed significant and could be ranked:T1 > T3 > T4 > T2 > CK (P<0.05). K content was not significantly different among the four fertilizations (P>0.05) but was significantly higher than the CK treatment (P<0.05), and could be ranked:T4 > T3 > T2 > T1 > CK. The C:N ratios in the five treatments were significantly different (P<0.05) at a soil depth of 10-20 cm (T4 > T3 > T1 > CK > T2). The C:P ratios in the five treatments were significantly different (P<0.05) at a soil depth of 0-10 cm (T1 > T3 > CK > T4 > T2). The C:K, N:P, N:K, and P:K ratios for the five treatments at both of the soil depths showed significant differences (P<0.05), and the C:K, N:K, and P:K were ranked as T1 > T3 > T4 > T2 > CK, whereas the N:P ratio was ranked as T1 > CK > T4 > T3 > T2. The C, N, P, and K contents and their stoichiometric ratios decreased with increasing soil depth. Soil C, N and P in the study site showed moderate variations based on their coefficient of variation (CV):37.50%, 38.91%, and 25.35%, respectively. Soil K on the other hand showed a weak variation (CV 5.03%). Soil C:N and C:P also showed a weak variation with a CV of 7.52% and 14.38%, respectively. Soil C:K, N:P, N:K, and P:K showed moderate variations, with a CV of 35.62%, 17.01%, 37.24% and 44.78%, respectively. There were significant positive interrelations among soil C, N, P, and K contents and their stoichiometric ratios (P<0.05). The average N:P ratio was 2.09, which was much lower than the average value for various soil types in China. Our results indicate that soil N is the key limiting nutrient in purple hillslope land, and that the combination of organic and inorganic fertilizers can effectively alleviate the N deficiency in the study area.

PDF emailed within 1 workday: $29.90