Effects of Induction/Inhibition of Endogenous Heme Oxygenase-1 on Lipid Metabolism, Endothelial Function, and Atherosclerosis in Rabbits on a High Fat Diet

Liu, D.; He, Z.; Wu, L.; Fang, Y.

Journal of Pharmacological Sciences 118(1): 14-24

2012


ISSN/ISBN: 1347-8648
PMID: 32092834
DOI: 10.1254/jphs.11071fp
Accession: 069845431

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
The heme oxygenase-1 (HO-1) / carbon monoxide (CO) system has been presumed as a therapeutic target for preventing atherosclerosis. However, the exact mechanism(s) underlying this system remains largely undefined. This study aims to examine the influence of induction/inhibition of HO-1 on atherosclerotic plaque using pharmacological approaches and to elucidate potential mechanisms. Rabbits were randomly assigned to receive a standard diet (control group), high fat diet (HFD), HFD plus HO inducer hemin (HFD + H group), and HFD plus an HO inhibitor, zinc protoporphyrin-9 (ZnPP9, HFD + Z group). Atherosclerotic plaque was evaluated using oil red O staining and histological analyses. Immunohistochemistry, western blotting, and RT-PCR were employed to study the expression of HO-1 and endothelin-1 (ET-1). Levels of CO, nitric oxide (NO), eNOS/iNOS activities, NF-κB activity, and TNF-α level were determined. No significant differences of serum lipid levels were observed among the HFD, HFD + Z, and HFD + H groups. In rabbits, HFD induced typical atherosclerotic plaque and increased intima/media thickness ratio, which was markedly reduced in the HFD + H group and further aggravated in the HFD + Z group. Furthermore, hemin increased HO-1 expression, CO levels, and eNOS activity, while decreasing iNOS levels, ET-1 expression, NF-κB activity, and TNF-α level. ZnPP9 caused opposite effects. Induction of the endogenous HO-1/CO system by hemin can prevent atherosclerosis though increasing CO levels, regulating eNOS activity, NF-κB activity, TNF-α levels, and ET-1 levels in rabbits. Our results add new evidence for the importance of HO-1 in the genesis and development of atherosclerosis and provide several possible mechanisms underlying the antiatherosclerosis effects of HO-1.