Home
  >  
Section 70
  >  
Chapter 69,972

Electric field vector measurements via nanosecond electric-field-induced second-harmonic generation

Chng, T.L.; Naphade, M.; Goldberg, B.M.; Adamovich, I.V.; Starikovskaia, S.M.

Optics Letters 45(7): 1942-1945

2020


ISSN/ISBN: 1539-4794
PMID: 32236038
Accession: 069971331

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Electric-field-induced second-harmonic generation, or E-FISH, has received renewed interest as a nonintrusive tool for probing electric fields in gas discharges and plasmas using ultrashort laser pulses. An important contribution of this work lies in establishing that the E-FISH method works effectively in the nanosecond regime, yielding field sensitivities of about a kV/cm at atmospheric pressure from a 16 ns pulse. This is expected to broaden its applicability within the plasma community, given the wider access to conventional nanosecond laser sources. A Pockels-cell-based pulse-slicing scheme, which may be readily integrated with such nanosecond laser systems, is shown to be a complementary and cost-effective option for improving the time resolution of the electric field measurement. Using this scheme, a time resolution of ∼3  ns is achieved, without any detriment to the signal sensitivity. This could prove invaluable for nonequilibrium plasma applications, where time resolution of a few nanoseconds or less is often critical. Finally, we take advantage of the field vector sensitivity of the E-FISH signal to demonstrate simultaneous measurements of both the horizontal and vertical components of the electric field.

PDF emailed within 1 workday: $29.90