Pseudo-marginal Metropolis Hastings sampling using averages of unbiased estimators
Sherlock, C.; Thiery, A.H.; Lee, A.
Biometrika 104(3): 727-734
2017
ISSN/ISBN: 0006-3444 DOI: 10.1093/biomet/asx031
Accession: 070153617
PDF emailed within 0-6 h: $19.90
Related References
Chib, S.; Jeliazkov, I. 2005: Accept-reject Metropolis-Hastings sampling and marginal likelihood estimation Statistica Neerlandica 59(1): 30-44Iliopoulos, G.; Malefaki, S. 2012: Variance reduction of estimators arising from Metropolis–Hastings algorithms Statistics and Computing 23(5): 577-587
Chib, S.; Jeliazkov, I. 2001: Marginal likelihood from the metropolis-hastings output Journal of the American Statistical Association 96(453): 270-281
Flötteröd, G; Bierlaire, M 2013: Metropolis Hastings sampling of paths Transportation Research Part B: Methodological 48: 53-66
Jozani, M.J.; Majidi, S.; Perron, F. 2012: Unbiased and almost unbiased ratio estimators of the population mean in ranked set sampling Statistical Papers 53(3): 719-737
Rudolf, D.; Sprungk, B. 2017: Metropolis-Hastings Importance Sampling Estimator PAMM 17(1): 731-734
Kail, G.; Chepuri, S.P.; Leus, G. 2016: Robust Censoring Using Metropolis-Hastings Sampling IEEE Journal of Selected Topics in Signal Processing 10(2): 270-283
Tapan, K. Nayak 2003: Finding optimal estimators in survey sampling using unbiased estimators of zero Journal of Statistical Planning and Inference 114(1-2): 21-30
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 2002: Perfect sampling from independent Metropolis-Hastings chains Journal of Statistical Planning and Inference 104(2): 297-314
Wolpert, D. H.; Lee, C. F. 2006: An adaptive Metropolis-Hastings scheme: Sampling and optimization Europhysics Letters (EPL) 76(3): 353-359
Walker, S.G. 2014: Sampling Unnormalized Probabilities: An Alternative to the Metropolis--Hastings Algorithm SIAM Journal on Scientific Computing 36(2): A482-A494
Miao, N.; Zhou, H.; Mou, L.; Yan, R.; Li, L. 2019: CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling Proceedings of the AAAI Conference on Artificial Intelligence 33: 6834-6842
Corcoran, J.N.; Schneider, U. 2005: Pseudo-perfect and adaptive variants of the Metropolis-Hastings algorithm with an independent candidate density Journal of Statistical Computation and Simulation 75(6): 459-475
Altaleb, A.; Robert, C.P. 2001: Analyse bayésienne du modèle logit : Algorithme par tranches ou Metropolis-Hastings - Bayesian analysis of the logit model: slice by slice or Metropolis Hastings algorithm Revue de Statistique Appliquee 49(4): 53-70
Wang, Z.; Ling, C. 2018: On the Geometric Ergodicity of Metropolis-Hastings Algorithms for Lattice Gaussian Sampling IEEE Transactions on Information Theory 64(2): 738-751
Tran, M.; Pitt, M.K.; Kohn, R. 2014: Adaptive Metropolis–Hastings sampling using reversible dependent mixture proposals Statistics and Computing 26(1-2): 361-381
LeSage, J.P. 2019: Fast MCMC estimation of multiple W-matrix spatial regression models and Metropolis–Hastings Monte Carlo log-marginal likelihoods Journal of Geographical Systems 22(1): 47-75
Grišins, P.; Mazets, I.E. 2014: Metropolis-Hastings thermal state sampling for numerical simulations of Bose-Einstein condensates Computer Physics Communications 185(7): 1926-1931
Liang, F.; Jin, I.-H. 2013: A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants Neural Computation 25(8): 2199-2234
Geweke, J.; Tanizaki, H. 2001: Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling Computational Statistics and Data Analysis 37(2): 151-170