Effect of hyperthyroidism on fibre-type composition, fibre area, glycogen content and enzyme activity in human skeletal muscle
Celsing, F.; Blomstrand, E.; Melichna, J.; Terrados, N.; Clausen, N.; Lins, P.E.; Jansson, E.
Clinical Physiology and Functional Imaging 6(2): 171-181
1986
ISSN/ISBN: 1475-0961
DOI: 10.1111/j.1475-097x.1986.tb00066.x
Accession: 070173124
PDF emailed within 0-6 h: $19.90
Related References
Celsing, F.; Blomstrand, E.; Melichna, J.; Terrados, N.; Clausen, N.; Lins, P.E.; Jansson, E. 1986: Effect of hyperthyroidism on fibre-type composition, fibre area, glycogen content and enzyme activity in human skeletal muscle Clinical Physiology 6(2): 171-181Lexell, J.; Downham, D.; Sjöström, M. 1983: Distribution of different fibre types in human skeletal muscles. A statistical and computational model for the study of fibre type grouping and early diagnosis of skeletal muscle fibre denervation and reinnervation Journal of the Neurological Sciences 61(3): 301-314
Lomax, R.B.; Robertson, W.R. 1992: The effects of hypo- and hyperthyroidism on fibre composition and mitochondrial enzyme activities in rat skeletal muscle Journal of Endocrinology 133(3): 375-380
Lomax, R.B.; Robertson, W.R. 1992: The effects of hypothyroidism and hyperthyroidism on fibre composition and mitochondrial enzyme activities in rat skeletal muscle Journal of Endocrinology 132(Suppl)
Fujimoto, S.; Watanabe, J.; Ogawa, R.; Kanamura, S. 1994: Age-related changes in fibre number, fibre size, fibre type composition and adenosine triphosphatase activity in rat soleus muscle Annals of Anatomy 176(5): 429-435
Daugaard, J.R.; Richter, E.A. 2004: Muscle- and fibre type-specific expression of glucose transporter 4, glycogen synthase and glycogen phosphorylase proteins in human skeletal muscle Pflugers Archiv: European Journal of Physiology 447(4): 452-456
Simoneau, J.A.; Lortie, G.; Boulay, M.R.; Thibault, M.C.; Bouchard, C. 1986: Repeatability of fibre type and enzyme activity measurements in human skeletal muscle Clinical Physiology and Functional Imaging 6(4): 347-356
Sogaard, P.; Szekeres, F.; Holmström, M.; Larsson, D.; Harlén, M.; Garcia-Roves, P.; Chibalin, A.V. 2009: Effects of fibre type and diffusion distance on mouse skeletal muscle glycogen content in vitro Journal of Cellular Biochemistry 107(6): 1189-1197
Molsted, S.; Eidemak, I.; Sorensen, H.Tauby.; Kristensen, J.Halkjaer.; Harrison, A.; Andersen, J.L. 2007: Myosin heavy-chain isoform distribution, fibre-type composition and fibre size in skeletal muscle of patients on haemodialysis Scandinavian Journal of Urology and Nephrology 41(6): 539-545
León-Velarde, F.; Sanchez, J.; Bigard, A.X.; Brunet, A.; Lesty, C.; Monge, C. 1993: High altitude tissue adaptation in Andean coots: Capillarity, fibre area, fibre type and enzymatic activities of skeletal muscle Journal of Comparative Physiology. B Biochemical Systemic and Environmental Physiology 163(1): 52-58
Ahmed, S.K.; Egginton, S.; Jakeman, P.M.; Mannion, A.F.; Ross, H.F. 1997: Is human skeletal muscle capillary supply modelled according to fibre size or fibre type? Experimental Physiology 82(1): 231-234
Johnson, M.A.; Sideri, G.; Weightman, D.; Appleton, D. 1973: A comparison of fibre size, fibre type constitution and spatial fibre type distribution in normal human muscle and in muscle from cases of spinal muscular atrophy and from other neuromuscular disorders Journal of the Neurological Sciences 20(4): 345-361
Stocks, B.; Dent, J.R.; Joanisse, S.; McCurdy, C.E.; Philp, A. 2017: Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity Frontiers in Physiology 8: 941
Jaworowski, A.; Porter, M.M.; Holmbäck, A.M.; Downham, D.; Lexell, J. 2002: Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition Acta Physiologica Scandinavica 176(3): 215-225
Nielsen, J.; Holmberg, H.-C.; Schrøder, H.D.; Saltin, B.; Ortenblad, N. 2011: Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type Journal of Physiology 589(Part 11): 2871-2885
Nielsen, A.R.; Mounier, R.; Plomgaard, P.; Mortensen, O.H.; Penkowa, M.; Speerschneider, T.; Pilegaard, H.; Pedersen, B.K. 2007: Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition Journal of Physiology 584(Part 1): 305-312
Candek Potokar, M.; Lefaucheur, L.; Ecolan, P. 1998: Determination of glycogen in single skeletal muscle fibres by computerized image analysis. Application to the quantification of glycogen according to fibre type in two muscles and three pig genotypes Zbornik Veterinarske Fakultete Univerza Ljubljana 36(1): 57-66
Eiken, O.; Sundberg, C.J.; Esbjornsson, M.; Nygren, A.; Kaijser, L. 1991: Effects of ischaemic training on force development and fibre-type composition in human skeletal muscle Clinical Physiology and Functional Imaging 11(1): 41-49
López-Rivero, J.L.; Serrano, A.L.; Diz, A.M.; Galisteo, A.M. 1992: Variability of muscle fibre composition and fibre size in the horse gluteus medius: an enzyme-histochemical and morphometric study Journal of Anatomy 181: 1-10
Tesch, P.; Sjödin, B.; Karlsson, J. 1978: Relationship between lactate accumulation, LDH activity, LDH isozyme and fibre type distribution in human skeletal muscle Acta Physiologica Scandinavica 103(1): 40-46