The Nonlinear Schrdinger Equation with a Self-consistent Source in the Class of Periodic Functions
Yakhshimuratov, A.
Mathematical Physics, Analysis and Geometry 14(2): 153-169
2011
DOI: 10.1007/s11040-011-9091-5
Accession: 070317429
PDF emailed within 0-6 h: $19.90
Related References
Lenells, J. 2015: The defocusing nonlinear Schrdinger equation with t -periodic data: New exact solutions Nonlinear Analysis: Real World Applications 25: 31-50de Souza, M.; Araújo, Y.L. 2016: On nonlinear perturbations of a periodic fractional Schrdinger equation with critical exponential growth Mathematische Nachrichten 289(5-6): 610-625
Zhang, Y.; Xu, H.; Yao, C.; Cai, X. 2009: A class of exact solutions of the generalized nonlinear Schrdinger equation Reports on Mathematical Physics 63(3): 427-439
Slavnov, N. 2001: Asymptotics of the Fredholm Determinant Associated with the Correlation Functions of the Quantum Nonlinear Schrdinger Equation Journal of Mathematical Sciences 104(3): 1135-1143
Melnikov, V.K. 1991: Integration of the nonlinear Schroedinger equation with a self-consistent source Communications in Mathematical Physics 137(2): 359-381
Jiang, X.-H.; Gao, Y.-T.; Huang, Q.-M. 2017: Nonlinear wave solutions for an integrable sixth-order nonlinear Schrdinger equation in an optical fiber Optik - International Journal for Light and Electron Optics
Zayed, E.M.E.; Al-Nowehy, A.-G. 2017: Many new exact solutions to the higher-order nonlinear Schrdinger equation with derivative non-Kerr nonlinear terms using three different techniques Optik - International Journal for Light and Electron Optics
Liu, J.-G.; Osman, M.S.; Wazwaz, A.-M. 2019: A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrdinger equation with variable coefficients in nonlinear optical fibers Optik 180: 917-923
Alfimov, G.L.; Kevrekidis, P.G.; Konotop, V.V.; Salerno, M. 2002: Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential Physical Review. E Statistical Nonlinear and Soft Matter Physics 66(4 Part 2): 046608
A.B.Yakhshimuratov, M.M.M. 2016: Integration of a loaded Korteweg-de Vries equation in a class of periodic functions Russian Mathematics 60(2): 72-76
Crabb, M.; Akhmediev, N. 2019: Doubly periodic solutions of the class-I infinitely extended nonlinear Schrödinger equation Physical Review e 99(5-1): 052217
Gluskin, E. 1990: Zerocrossings of periodic time functions that appear in a nonlinear equation relevant to electrical engineering Journal of the Franklin Institute 327(4): 663-675
Panov, E.Y. 2017: The Cauchy problem for a first-order quasilinear equation in the class of Besicovitch almost periodic functions Sbornik: Mathematics 208(8): 1207-1224
Xiao, W.A.N.G.; Zhixiang, L.I. 2007: Globally dynamical behaviors for a class of nonlinear functional difference equation with almost periodic coefficients Applied Mathematics and Computation 190(2): 1116-1124
Anoshchenko, O.A. 1990: An inverse scattering problem for the Schrdinger equation with a potential having a periodic asymptotics Journal of Mathematical Sciences 48(6): 662-668
Vaninsky, K.L. 2005: Symplectic Structures for the Cubic Schrdinger Equation in the Periodic and Scattering Case Mathematical Physics, Analysis and Geometry 8(1): 1-39
Anoshchenko, O.A. 1990: Expansion in the eigenfunctions of the schrdinger equation with a potential having a periodic asymptotic behavior Journal of Mathematical Sciences 49(6): 1237-1241
Guo, Z.; Leung, A.; Liu, Y.; Yang, H. 2012: Bifurcating periodic solution for a class of first-order nonlinear delay differential equation after Hopf bifurcation Applied Mathematical Modelling 36(10): 4837-4846
Basarab-Horwath, P.; Fushchych, W.I.; Barannyk, L.F. 1997: Solutions of the relativistic nonlinear wave equation by solutions of the nonlinear Schrdinger equation Reports on Mathematical Physics 39(3): 353-374
Mann, H.-J. 1999: Stochastic mechanics and nonlinear schrdinger equation Reports on Mathematical Physics 44(1-2): 143-148