Section 72
Chapter 71,348

Biochemical properties of cellulolytic and xylanolytic enzymes from Sporotrichum thermophile and their utility in bioethanol production using rice straw

Singh, B.; Bala, A.; Anu; Alokika; Kumar, V.; Singh, D.

Preparative Biochemistry and Biotechnology 2021: 1-13


ISSN/ISBN: 1532-2297
PMID: 34010094
DOI: 10.1080/10826068.2021.1925911
Accession: 071347286

Download citation:  

Production of cellulolytic and xylanolytic enzymes by Sporotrichum thermophile was enhanced using response surface methodology in solid-state fermentation (SSF) using wheat straw and cotton oil cake. Cellulolytic and xylanolytic enzymes were partially purified by ammonium sulfate precipitation followed by ion exchange and gel filtration chromatographic techniques. Xylanase of S. thermophile is neutral xylanase displaying optimal activity at 60 °C with Km and Vmax values of 0.2 mg/mL and 238.05 µmole/min, respectively. All cellulases produced by the thermophilic mold showed optimal activity at pH 5.0 and 60 °C with Km values of 0.312 mg/mL, 0.113 mg/mL, and 0.285 mM for carboxymethyl cellulase (CMCase), filter paper cellulase (FPase), and β-glucosidase, respectively and while Vmax values were 181.81, 138.88, and 66.67 µmole/min, respectively. The presence of various metal ions (Ca2+ and Co2+), chemical reagent (glutaraldehyde), and surfactants (Tween 80 and Triton X-100) significantly improved the activities of all enzymes. All the enzymes showed high storage stability under low temperature (-20 and 4 °C) conditions. Cellulolytic and xylanolytic enzymes resulted in enhanced liberation of reducing sugars (356.34 mg/g) by hydrolyzing both cellulosic and hemicellulosic fractions of ammonia-pretreated rice straw as compared to other pretreatment methods used in the study. Fermentation of enzymatic hydrolysate resulted in the formation of 28.88 and 27.18 g/L of bioethanol in separate hydrolysis and fermentation (SHF) process by Saccharomyces cerevisiae and Pichia stipitis, respectively. Therefore, cellulolytic and xylanolytic enzymes of S. thermophile exhibited ideal properties of biocatalysts useful in the saccharification of cellulosic and hemicellulosic fractions of rice straw for the production of bioethanol.

PDF emailed within 0-6 h: $19.90