Therapeutic Effect of Exogenous Regulatory T Cells on Collagen-induced Arthritis and Rheumatoid Arthritis

Li, S.; Wang, H.; Wu, H.; Chang, X.

Cell Transplantation 29: 963689720954134

2020


ISSN/ISBN: 1555-3892
PMID: 32990025
DOI: 10.1177/0963689720954134
Accession: 072764210

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 0-6 h
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
Regulatory T (Treg) cells have anti-inflammatory functions and heighten immune tolerance. The proportion and functions of Treg cells are perturbed in rheumatoid arthritis (RA), contributing to the excessive immune activation associated with this disease. We therefore hypothesized that supplementation with foreign Treg cells could be used to treat RA. To investigate the therapeutic effects of exogenous Treg cells on RA and its mechanism, we used human Treg cells to treat collagen-induced arthritis (CIA) in a rat model to observe whether exogenous Treg cells can treat the disease across species. Successful treatment would indicate that Treg cell transplantation in humans is more likely to affect RA. In the present study, human Treg cells were collected from healthy human peripheral blood and culture-expanded in vitro. Induced human Treg cells were injected into CIA rats via the tail vein. The rats' lymphocyte subtypes, cytokines, and Th1/Th2 ratios were measured using flow cytometry. In the rats, following injection of the human Treg cells, the severity of CIA was significantly reduced (P < 0.01), the proportion of endogenous Treg cells increased in the peripheral blood and spleen (P = 0.007 and P < 0.01, respectively), and the proportion of B cells decreased (P = 0.031). The IL-5 level, IL-6 level, and Th1/Th2 ratio in the peripheral blood were decreased (P = 0.013, 0.009, and 0.012, respectively). The culture-expanded human Treg cells were also cultured with synovial fibroblast cells from RA patients (RASFs). After coculture with Treg cells, RASFs showed reduced proliferation (P < 0.01) and increased apoptosis (P = 0.037). These results suggest that exogenous and induced Treg cells can produce a therapeutic effect in RA and CIA by increasing endogenous Treg cells and RASF apoptosis and reducing B cells, the Th1/Th2 ratio, and secretion levels of IL-5 and IL-6. Treg cell transplantation could serve as a therapy for RA that does not cause immune rejection.