Section 73

EurekaMag PDF full texts Chapter 72,902


Cong, Q.; Jia, H.; Li, P.; Qiu, S.; Yeh, J.; Wang, Y.; Zhang, Z-Lin.; Ao, J.; Li, B.; Liu, H. 2017: P38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Scientific Reports 7: 45964
Schultze, S.M.; Mairhofer, A.; Li, D.; Cen, J.; Beug, H.; Wagner, E.F.; Hui, L. 2012: P38α controls erythroblast enucleation and Rb signaling in stress erythropoiesis. Cell Research 22(3): 539-550
Rius-Pérez, S.; Tormos, A.M.; Pérez, S.; Finamor, I.; Rada, P.; Valverde, Ángela.M.; Nebreda, A.R.; Sastre, J.; Taléns-Visconti, R. 2019: P38α deficiency restrains liver regeneration after partial hepatectomy triggering oxidative stress and liver injury. Scientific Reports 9(1): 3775
Zhang, M.; Gao, J.; Zhao, X.; Zhao, M.; Ma, D.; Zhang, X.; Tian, D.; Pan, B.; Yan, X.; Wu, J.; Meng, X.; Yin, H.; Zheng, L. 2021: P38α in macrophages aggravates arterial endothelium injury by releasing IL-6 through phosphorylating megakaryocytic leukemia 1. Redox Biology 38: 101775
Guijarro, M.V.; Vergel, M.; Marin, J.J.; Muñoz-Galván, S.; Ferrer, I.; Ramon y Cajal, S.; Roncador, G.; Blanco-Aparicio, C.; Carnero, A. 2012: P38α limits the contribution of MAP17 to cancer progression in breast tumors. Oncogene 31(41): 4447-4459
Sorimachi, Y.; Karigane, D.; Ootomo, Y.; Kobayashi, H.; Morikawa, T.; Otsu, K.; Kubota, Y.; Okamoto, S.; Goda, N.; Takubo, K. 2021: P38α plays differential roles in hematopoietic stem cell activity dependent on aging contexts. Journal of Biological Chemistry 296: 100563
Salvador-Bernáldez, Mía.; Mateus, S.B.; Del Barco Barrantes, Ián.; Arthur, S.C.; Martínez-A, C.; Nebreda, A.R.; Salvador, Jús.M. 2017: P38α regulates cytokine-induced IFNγ secretion via the Mnk1/eIF4E pathway in Th1 cells. Immunology and Cell Biology 95(9): 814-823
Gianni, M.; Peviani, M.; Bruck, N.; Rambaldi, A.; Borleri, G.; Terao, M.; Kurosaki, M.; Paroni, G.; Rochette-Egly, C.; Garattini, E. 2012: P38αMAPK interacts with and inhibits RARα: suppression of the kinase enhances the therapeutic activity of retinoids in acute myeloid leukemia cells. Leukemia 26(8): 1850-1861
Pascual-Serra, R.; Fernández-Aroca, D.M.; Sabater, S.; Roche, O.; Andrés, I.; Ortega-Muelas, M.; Arconada-Luque, E.; Garcia-Flores, N.; Bossi, G.; Belandia, B.; Ruiz-Hidalgo, M.J.; Sánchez-Prieto, R. 2021: P38β (MAPK11) mediates gemcitabine-associated radiosensitivity in sarcoma experimental models. RadioTherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology 156: 136-144
Katopodis, P.; Kerslake, R.; Zikopoulos, A.; Beri, N.; Anikin, V. 2021: P38β - MAPK11 and its role in female cancers. Journal of Ovarian Research 14(1): 84
Wang, F.; Qi, X.-M.; Wertz, R.; Mortensen, M.; Hagen, C.; Evans, J.; Sheinin, Y.; James, M.; Liu, P.; Tsai, S.; Thomas, J.; Mackinnon, A.; Dwinell, M.; Myers, C.R.; Bartrons Bach, R.; Fu, L.; Chen, G. 2020: P38γ MAPK Is Essential for Aerobic Glycolysis and Pancreatic Tumorigenesis. Cancer Research 80(16): 3251-3264
Yin, N.; Qi, X.; Tsai, S.; Lu, Y.; Basir, Z.; Oshima, K.; Thomas, J.P.; Myers, C.R.; Stoner, G.; Chen, G. 2016: P38γ MAPK is required for inflammation-associated colon tumorigenesis. Oncogene 35(8): 1039-1048
González-Terán, Bárbara.; López, J.Antonio.; Rodríguez, E.; Leiva, L.; Martínez-Martínez, S.; Bernal, J.Antonio.; Jiménez-Borreguero, L.Jesús.; Redondo, J.Miguel.; Vazquez, Jús.; Sabio, G. 2016: P38γ and δ promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. Nature Communications 7: 10477
Tomás-Loba, A.; Manieri, E.; González-Terán, Bárbara.; Mora, A.; Leiva-Vega, L.; Santamans, Aén.M.; Romero-Becerra, R.; Rodríguez, E.; Pintor-Chocano, Aánzazu.; Feixas, F.; López, J.Antonio.; Caballero, B.; Trakala, M.; Blanco, Óscar.; Torres, J.L.; Hernández-Cosido, L.; Montalvo-Romeral, V.; Matesanz, N.; Roche-Molina, M.; Bernal, J.Antonio.; Mischo, H.; León, M.; Caballero, A.; Miranda-Saavedra, D.; Ruiz-Cabello, Jús.; Nevzorova, Y.A.; Cubero, F.Javier.; Bravo, Jónimo.; Vázquez, Jús.; Malumbres, M.; Marcos, M.; Osuna, Sílvia.; Sabio, G. 2019: P38γ is essential for cell cycle progression and liver tumorigenesis. Nature 568(7753): 557-560
Yang, K.; Liu, Y.; Liu, Z.; Liu, J.; Liu, X.; Chen, X.; Li, C.; Zeng, Y. 2013: P38γ overexpression in gliomas and its role in proliferation and apoptosis. Scientific Reports 3: 2089
Shi, C.; Cheng, W.-N.; Wang, Y.; Li, D.-Z.; Zhou, L.-N.; Zhu, Y.-C.; Zhou, X.-Z. 2020: P38γ overexpression promotes osteosarcoma cell progression. Aging 12(18): 18384-18395
George, S.A.; Kiss, A.; Obaid, S.N.; Venegas, A.; Talapatra, T.; Wei, C.; Efimova, T.; Efimov, I.R. 2020: P38δ genetic ablation protects female mice from anthracycline cardiotoxicity. American Journal of Physiology. Heart and Circulatory Physiology 319(4): H775-H786
Ouyang, L.; Chen, Y.; Wang, Y.; Chen, Y.; Fu, A.K.Y.; Fu, W-Yu.; Ip, N.Y. 2020: P39-associated Cdk5 activity regulates dendritic morphogenesis. Scientific Reports 10(1): 18746
Bishop, J.A.; Teruya-Feldstein, J.; Westra, W.H.; Pelosi, G.; Travis, W.D.; Rekhtman, N. 2012: P40 (ΔNp63) is superior to p63 for the diagnosis of pulmonary squamous cell carcinoma. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 25(3): 405-415
Flinterman, M.B.; Mymryk, J.S.; Klanrit, P.; Yousef, A.F.; Lowe, S.W.; Caldas, C.; Gäken, J.; Farzaneh, F.; Tavassoli, M. 2007: P400 function is required for the adenovirus E1A-mediated suppression of EGFR and tumour cell killing. Oncogene 26(48): 6863-6874
Vadlamudi, R.K.; Li, F.; Barnes, C.J.; Bagheri-Yarmand, R.; Kumar, R. 2004: P41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. Embo Reports 5(2): 154-160
Knockaert, M.; Lenormand, P.; Gray, N.; Schultz, P.; Pouysségur, J.; Meijer, L. 2002: P42/p44 MAPKs are intracellular targets of the CDK inhibitor purvalanol. Oncogene 21(42): 6413-6424
Zhu, Z.; Mukhina, S.; Zhu, T.; Mertani, H.C.; Lee, K-Onn.; Lobie, P.E. 2005: P44/42 MAP kinase-dependent regulation of catalase by autocrine human growth hormone protects human mammary carcinoma cells from oxidative stress-induced apoptosis. Oncogene 24(23): 3774-3785
Sutterlüty, H.; Chatelain, E.; Marti, A.; Wirbelauer, C.; Senften, M.; Müller, U.; Krek, W. 1999: P45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biology 1(4): 207-214
Taylor, G.A.; Feng, C.G.; Sher, A. 2004: P47 GTPases: regulators of immunity to intracellular pathogens. Nature Reviews. Immunology 4(2): 100-109
Kondo, H.; Rabouille, C.; Newman, R.; Levine, T.P.; Pappin, D.; Freemont, P.; Warren, G. 1997: P47 is a cofactor for p97-mediated membrane fusion. Nature 388(6637): 75-78
Shibata, Y.; Oyama, M.; Kozuka-Hata, H.; Han, X.; Tanaka, Y.; Gohda, J.; Inoue, J-ichiro. 2012: P47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO. Nature Communications 3: 1061
Gong, P.; Chen, Y.-Q.; Lin, A.-H.; Zhang, H.-B.; Zhang, Y.; Ye, R.D.; Yu, Y. 2020: P47phox deficiency improves cognitive impairment and attenuates tau hyperphosphorylation in mouse models of AD. Alzheimer's Research and Therapy 12(1): 146
Wang, X.; Zhang, S.; Ding, Y.; Tong, H.; Xu, X.; Wei, G.; Chen, Y.; Ju, W.; Fu, C.; Qi, K.; Li, Z.; Zeng, L.; Xu, K.; Qiao, J. 2020: P47phox deficiency impairs platelet function and protects mice against arterial and venous thrombosis. Redox Biology 34: 101569
Donaldson, M.; Antignani, A.; Milner, J.; Zhu, N.; Wood, A.; Cardwell-Miller, L.; Changpriroa, C.M.; Jackson, S.H. 2009: P47phox-deficient immune microenvironment signals dysregulate naive T-cell apoptosis. Cell Death and Differentiation 16(1): 125-138
Wu, L.; Crawley, C.D.; Garofalo, A.; Nichols, J.W.; Campbell, P-Ashley.; Khramtsova, G.F.; Olopade, O.I.; Weichselbaum, R.R.; Yamini, B. 2020: P50 mono-ubiquitination and interaction with BARD1 regulates cell cycle progression and maintains genome stability. Nature Communications 11(1): 5007
Ogawa, E.; Okuyama, R.; Ikawa, S.; Nagoshi, H.; Egawa, T.; Kurihara, A.; Yabuki, M.; Tagami, H.; Obinata, M.; Aiba, S. 2008: P51/p63 Inhibits ultraviolet B-induced apoptosis via Akt activation. Oncogene 27(6): 848-856
Katoh, I.; Aisaki, K.I.; Kurata, S.I.; Ikawa, S.; Ikawa, Y. 2000: P51A (TAp63gamma), a p53 homolog, accumulates in response to DNA damage for cell regulation. Oncogene 19(27): 3126-3130
Saxon, J.A.; Yu, H.; Polosukhin, V.V.; Stathopoulos, G.T.; Gleaves, L.A.; McLoed, A.G.; Massion, P.P.; Yull, F.E.; Zhao, Z.; Blackwell, T.S. 2018: P52 expression enhances lung cancer progression. Scientific Reports 8(1): 6078
Yoshizawa, R.; Umeki, N.; Yamamoto, A.; Okada, M.; Murata, M.; Sako, Y. 2021: P52Shc regulates the sustainability of ERK activation in a RAF-independent manner. Molecular Biology of the Cell 32(19): 1838-1848
Arena, A.; Stigliano, A.; Belcastro, E.; Giorda, E.; Rosado, M.M.; Grossi, A.; Assenza, M.R.; Moretti, F.; Fierabracci, A. 2021: P53 Activation Effect in the Balance of T Regulatory and Effector Cell Subsets in Patients with Thyroid Cancer and Autoimmunity. Frontiers in Immunology 12: 728381
Deng, X.; Li, Y.; Gu, S.; Chen, Y.; Yu, B.; Su, J.; Sun, L.; Liu, Y. 2020: P53 Affects PGC1α Stability Through AKT/GSK-3β to Enhance Cisplatin Sensitivity in Non-Small Cell Lung Cancer. Frontiers in Oncology 10: 1252
Al-Maghrabi, J.; Vorobyova, L.; Chapman, W.; Jewett, M.; Zielenska, M.; Squire, J.A. 2001: P53 Alteration and chromosomal instability in prostatic high-grade intraepithelial neoplasia and concurrent carcinoma: analysis by immunohistochemistry, interphase in situ hybridization, and sequencing of laser-captured microdissected specimens. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 14(12): 1252-1262
Epistolato, M.Carmela.; Disciglio, V.; Livide, G.; Berchialla, P.; Mencarelli, M.Antonietta.; Marozza, A.; Amenduni, M.; Hadjistilianou, T.; De Francesco, S.; Acquaviva, A.; Toti, P.; Cetta, F.; Ariani, F.; De Marchi, M.; Renieri, A.; Giachino, D. 2011: P53 Arg72Pro and MDM2 309 SNPs in hereditary retinoblastoma. Journal of Human Genetics 56(9): 685-686
Salomoni, P.; Pandolfi, P.Paolo. 2002: P53 De-ubiquitination: at the edge between life and death. Nature Cell Biology 4(6): E152-E153
Avallone, G.; Muscatello, L.V.; Leoni, A.; Roccabianca, P.; Lepri, E.; Crippa, L.; Bacci, B. 2020: P53 Expression in Canine Liposarcoma Correlates with Myxoid Variant and Higher Proliferative Activity. Veterinary Pathology 57(5): 620-622
Chandratre, G.A.; Wagh, V.; Badgujar, P.C.; Patil, V.; Nehte, R.S. 2020: P53 Gene Mutation in Blood of Zebu Cattle with Squamous Cell Carcinoma of the Horn. Journal of Comparative Pathology 181: 53-57
Kurup, S.P.; Moioffer, S.J.; Pewe, L.L.; Harty, J.T. 2020: P53 Hinders CRISPR/Cas9-Mediated Targeted Gene Disruption in Memory CD8 T Cells In Vivo. Journal of Immunology 205(8): 2222-2230
Thompson, E.F.; Chen, J.; Huvila, J.; Pors, J.; Ren, H.; Ho, J.; Chow, C.; Ta, M.; Proctor, L.; McAlpine, J.N.; Huntsman, D.; Gilks, C.Blake.; Hoang, L. 2020: P53 Immunohistochemical patterns in HPV-related neoplasms of the female lower genital tract can be mistaken for TP53 null or missense mutational patterns. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 33(9): 1649-1659
Kim, J.; Nakasaki, M.; Todorova, D.; Lake, B.; Yuan, C-Y.; Jamora, C.; Xu, Y. 2014: P53 Induces skin aging by depleting Blimp1+ sebaceous gland cells. Cell Death and Disease 5: E1141
Liu, Y.; Wu, X.; Du, D.; Liu, J.; Zhang, W.; Gao, Y.; Zhang, H. 2021: P53 Inhibition Provides a Pivotal Protective Effect against Cerebral Ischemia-Reperfusion Injury via the Wnt Signaling Pathway. Cerebrovascular Diseases 50(6): 682-690
Funk, L.C.; Wan, J.; Ryan, S.D.; Kaur, C.; Sullivan, R.; Roopra, A.; Weaver, B.A. 2021: P53 Is not Required for High CIN to Induce Tumor Suppression. Molecular Cancer Research: Mcr 19(1): 112-123
Chen, T.; Wu, H.; Chen, X.; Xie, R.; Wang, F.; Sun, H.; Chen, L. 2020: P53 Mediates GnRH Secretion via Lin28/let-7 System in GT1-7 Cells. Diabetes Metabolic Syndrome and Obesity: Targets and Therapy 13: 4681-4688
Wang, H.; Chen, L.; Zhou, T.; Zhang, Z.; Zeng, C. 2021: P53 Mutation at Serine 249 and its Gain of Function Are Highly Related to Hepatocellular Carcinoma after Smoking Exposure. Public Health Genomics 24(3-4): 171-181
Zhang, Y.; Xia, M.; Zhou, Z.; Hu, X.; Wang, J.; Zhang, M.; Li, Y.; Sun, L.; Chen, F.; Yu, H. 2021: P53 Promoted Ferroptosis in Ovarian Cancer Cells Treated with Human Serum Incubated-Superparamagnetic Iron Oxides. International Journal of Nanomedicine 16: 283-296
Bock, F.J.; Tait, S.W.G. 2018: P53 REEPs to sow ER-mitochondrial contacts. Cell Research 28(9): 877-878
Ayuob, N.; Al-Shathly, M.R.; Bakhshwin, A.; Al-Abbas, N.S.; Shaer, N.A.; Al Jaouni, S.; Hamed, W.H.E. 2021: P53 Rather than β-Catenin Mediated the Combined Hypoglycemic Effect of Cinnamomum cassia (L.) and Zingiber officinale Roscoe in the Streptozotocin-Induced Diabetic Model. Frontiers in Pharmacology 12: 664248
Schubert, Jörg.; Brabletz, T. 2011: P53 Spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Research 21(5): 705-707
Tan, Z.; Qu, W.; Tu, W.; Liu, W.; Baudry, M.; Schreiber, S.S. 2000: P53 accumulation due to down-regulation of ubiquitin: relevance for neuronal apoptosis. Cell Death and Differentiation 7(7): 675-681
Lim, Y.; De Bellis, D.; Dorstyn, L.; Kumar, S. 2018: P53 accumulation following cytokinesis failure in the absence of caspase-2. Cell Death and Differentiation 25(11): 2050-2052
Brockhaus, F.; Brüne, B. 1999: P53 accumulation in apoptotic macrophages is an energy demanding process that precedes cytochrome c release in response to nitric oxide. Oncogene 18(47): 6403-6410
Wales, M.M.; Biel, M.A.; el Deiry, W.; Nelkin, B.D.; Issa, J.P.; Cavenee, W.K.; Kuerbitz, S.J.; Baylin, S.B. 1995: P53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nature Medicine 1(6): 570-577
Chen, J.; Wang, J.; Li, H.; Wang, S.; Xiang, X.; Zhang, D. 2016: P53 activates miR-192-5p to mediate vancomycin induced AKI. Scientific Reports 6: 38868
Meyer, K.D.; Lin, S-Chieh.; Bernecky, C.; Gao, Y.; Taatjes, D.J. 2010: P53 activates transcription by directing structural shifts in Mediator. Nature Structural and Molecular Biology 17(6): 753-760
Sablina, A.A.; Chumakov, P.M.; Levine, A.J.; Kopnin, B.P. 2001: P53 activation in response to microtubule disruption is mediated by integrin-Erk signaling. Oncogene 20(8): 899-909
Kon, N.; Gu, W. 2021: P53 activation vs. stabilization: an acetylation tale from the C-terminal tail. Oncoscience 8: 58-60
Delia, D.; Mizutani, S.; Lamorte, G.; Goi, K.; Iwata, S.; Pierotti, M.A. 1996: P53 activity and chemotherapy. Nature Medicine 2(7): 724-725
Sheikh, T.; Sen, E. 2021: P53 affects epigenetic signature on SOCS1 promoter in response to TLR4 inhibition. Cytokine 140: 155418
Sauter, E.R.; Takemoto, R.; Litwin, S.; Herlyn, M. 2002: P53 alone or in combination with antisense cyclin D1 induces apoptosis and reduces tumor size in human melanoma. Cancer Gene Therapy 9(10): 807-812
Buttitta, F.; Marchetti, A.; Gadducci, A.; Pellegrini, S.; Morganti, M.; Carnicelli, V.; Cosio, S.; Gagetti, O.; Genazzani, A.R.; Bevilacqua, G. 1997: P53 alterations are predictive of chemoresistance and aggressiveness in ovarian carcinomas: a molecular and immunohistochemical study. British Journal of Cancer 75(2): 230-235
Drexler, H.G.; Fombonne, S.; Matsuo, Y.; Hu, Z.B.; Hamaguchi, H.; Uphoff, C.C. 2000: P53 alterations in human leukemia-lymphoma cell lines: in vitroartifact or prerequisite for cell immortalization?. Leukemia 14(1): 198-206
Ghosh, S.; Salot, S.; Sengupta, S.; Navalkar, A.; Ghosh, D.; Jacob, R.; Das, S.; Kumar, R.; Jha, N.Nath.; Sahay, S.; Mehra, S.; Mohite, G.M.; Ghosh, S.K.; Kombrabail, M.; Krishnamoorthy, G.; Chaudhari, P.; Maji, S.K. 2017: P53 amyloid formation leading to its loss of function: implications in cancer pathogenesis. Cell Death and Differentiation 24(10): 1784-1798
Lu, W-Jin.; Amatruda, J.F.; Abrams, J.M. 2009: P53 ancestry: gazing through an evolutionary lens. Nature Reviews. Cancer 9(10): 758-762
Liu, J.; Wang, H.; Zheng, M.; Deng, L.; Zhang, X.; Lin, B. 2020: P53 and ANXA4/NF‑κB p50 complexes regulate cell proliferation, apoptosis and tumor progression in ovarian clear cell carcinoma. International Journal of Molecular Medicine 46(6): 2102-2114
Fabi, A.; Mottolese, M.; Di Benedetto, A.; Sperati, F.; Ercolani, C.; Buglioni, S.; Nisticò, C.; Ferretti, G.; Vici, P.; Perracchio, L.; Malaguti, P.; Russillo, M.; Botti, C.; Pescarmona, E.; Cognetti, F.; Terrenato, I. 2020: P53 and BLC2 Immunohistochemical Expression Across Molecular Subtypes in 1099 Early Breast Cancer Patients with Long-Term Follow-up: An Observational Study. Clinical Breast Cancer 20(6): E761-E770
Jiang, P.; Du, W.; Wu, M. 2007: P53 and Bad: remote strangers become close friends. Cell Research 17(4): 283-285
Gannon, J.V.; Lane, D.P. 1987: P53 and DNA polymerase alpha compete for binding to SV40 T antigen. Nature 329(6138): 456-458
Schavolt, K.L.; Pietenpol, J.A. 2007: P53 and Delta Np63 alpha differentially bind and regulate target genes involved in cell cycle arrest, DNA repair and apoptosis. Oncogene 26(42): 6125-6132
Polager, S.; Ginsberg, D. 2009: P53 and E2f: partners in life and death. Nature Reviews. Cancer 9(10): 738-748
de Belle, I.; Huang, R.P.; Fan, Y.; Liu, C.; Mercola, D.; Adamson, E.D. 1999: P53 and Egr-1 additively suppress transformed growth in HT1080 cells but Egr-1 counteracts p53-dependent apoptosis. Oncogene 18(24): 3633-3642
Santamaria, A.B.; Davis, D.W.; Nghiem, D.X.; McConkey, D.J.; Ullrich, S.E.; Kapoor, M.; Lozano, G.; Ananthaswamy, H.N. 2002: P53 and Fas ligand are required for psoralen and UVA-induced apoptosis in mouse epidermal cells. Cell Death and Differentiation 9(5): 549-560
Tergaonkar, V. 2009: P53 and NFkappaB: fresh breath in the cross talk. Cell Research 19(12): 1313-1315
Wickremasinghe, R.G.; Prentice, A.G.; Steele, A.J. 2011: P53 and Notch signaling in chronic lymphocytic leukemia: clues to identifying novel therapeutic strategies. Leukemia 25(9): 1400-1407
Moll, U.M.; Marchenko, N.; Zhang, X-K. 2006: P53 and Nur77/TR3 - transcription factors that directly target mitochondria for cell death induction. Oncogene 25(34): 4725-4743
Linn, S.C.; Honkoop, A.H.; Hoekman, K.; van der Valk, P.; Pinedo, H.M.; Giaccone, G. 1996: P53 and P-glycoprotein are often co-expressed and are associated with poor prognosis in breast cancer. British Journal of Cancer 74(1): 63-68
Zheng, H.; Ying, H.; Yan, H.; Kimmelman, A.C.; Hiller, D.J.; Chen, A-Jou.; Perry, S.R.; Tonon, G.; Chu, G.C.; Ding, Z.; Stommel, J.M.; Dunn, K.L.; Wiedemeyer, R.; You, M.J.; Brennan, C.; Wang, Y.Alan.; Ligon, K.L.; Wong, W.H.; Chin, L.; DePinho, R.A. 2008: P53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455(7216): 1129-1133
Cain, J.E.; Watkins, D.Neil. 2020: P53 and RB1 regulate Hedgehog responsiveness via autophagy-mediated ciliogenesis. Molecular and Cellular Oncology 7(6): 1805095
Poller, D.N.; Baxter, K.J.; Shepherd, N.A. 1997: P53 and Rb1 protein expression: are they prognostically useful in colorectal cancer?. British Journal of Cancer 75(1): 87-93
Minella, A.C.; Grim, J.E.; Welcker, M.; Clurman, B.E. 2007: P53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability. Oncogene 26(48): 6948-6953
Giatromanolaki, A.; Koukourakis, M.I. 1998: P53 and angiogenesis in non-small-cell lung cancer. British Journal of Cancer 77(5): 850-852
Piris, M.A.; Pezzella, F.; Martinez-Montero, J.C.; Orradre, J.L.; Villuendas, R.; Sanchez-Beato, M.; Cuena, R.; Cruz, M.A.; Martinez, B.; Pezella F [corrected to Pezzella, F.]. 1994: P53 and bcl-2 expression in high-grade B-cell lymphomas: correlation with survival time. British Journal of Cancer 69(2): 337-341
Wood, L.L. 1995: P53 and bladder cancer. New England Journal of Medicine 332(14): 958
Tan, P-Hoon.; Jayabaskar, T.; Yip, G.; Tan, Y.; Hilmy, M.; Selvarajan, S.; Bay, B-Huat. 2005: P53 and c-kit (CD117) protein expression as prognostic indicators in breast phyllodes tumors: a tissue microarray study. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 18(12): 1527-1534
Groves, M.J.; Johnson, C.E.; James, J.; Prescott, A.R.; Cunningham, J.; Haydock, S.; Pepper, C.; Fegan, C.; Pirrie, L.; Westwood, N.J.; Coates, P.J.; Ganley, I.G.; Tauro, S. 2013: P53 and cell cycle independent dysregulation of autophagy in chronic lymphocytic leukaemia. British Journal of Cancer 109(9): 2434-2444
Wu, G.S.; El-Diery, W.S. 1996: P53 and chemosensitivity. Nature Medicine 2(3): 255-256
Hiramoto, K.; Yamate, Y.; Sato, E.F. 2021: P53 and clock genes play an important role in memory and learning ability depression due to long-term ultraviolet A eye irradiation. Photochemical and Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 2021
Bayer, F.E.; Zimmermann, M.; Fischer, P.; Gromoll, C.; Preiss, A.; Nagel, A.C. 2017: P53 and cyclin G cooperate in mediating genome stability in somatic cells of Drosophila. Scientific Reports 7(1): 17890
Royds, J.A.; Iacopetta, B. 2006: P53 and disease: when the guardian angel fails. Cell Death and Differentiation 13(6): 1017-1026
Jung, M.S.; Yun, J.; Chae, H.D.; Kim, J.M.; Kim, S.C.; Choi, T.S.; Shin, D.Y. 2001: P53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 20(41): 5818-5825
Bourdon, J-C. 2007: P53 and its isoforms in cancer. British Journal of Cancer 97(3): 277-282
Knight, R.A. 1999: P53 and its younger siblings. Cell Death and Differentiation 6(12): 1143
Grover, R.; Candeias, M.M.; Fåhraeus, R.; Das, S. 2009: P53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 28(30): 2766-2772
Vousden, K.H.; Ryan, K.M. 2009: P53 and metabolism. Nature Reviews. Cancer 9(10): 691-700
Prieur, A.; Besnard, E.; Babled, Aélie.; Lemaitre, J-Marc. 2011: P53 and p16(INK4A) independent induction of senescence by chromatin-dependent alteration of S-phase progression. Nature Communications 2: 473
Kwan, D.N.; Rocha, J.úl.T.Q.óz.; Niero-Melo, L.; Domingues, M.A.C.ód.; Oliveira, C.C. 2020: P53 and p21 expression in bone marrow clots of megaloblastic anemia patients. International Journal of Clinical and Experimental Pathology 13(7): 1829-1833
Soengas, M.S.; Lowe, S.W. 2000: P53 and p73: seeing double?. Nature Genetics 26(4): 391-392
Janz, C.; Süsse, S.; Wiesmüller, L. 2002: P53 and recombination intermediates: role of tetramerization at DNA junctions in complex formation and exonucleolytic degradation. Oncogene 21(14): 2130-2140
Rosenheimer-Goudsmid, N.; Haupt, Y.; Yefenof, E.; Zilberman, Y.; Guy, R. 2000: P53 and thymic 'death by neglect': thymic epithelial cell-induced apoptosis of CD4+8+ thymocytes is p53-independent. Cell Death and Differentiation 7(3): 241-249
Cote, R.J.; Esrig, D.; Groshen, S.; Jones, P.A.; Skinner, D.G. 1997: P53 and treatment of bladder cancer. Nature 385(6612): 123-125
Ambs, S.; Merriam, W.G.; Ogunfusika, M.O.; Bennett, W.P.; Ishibe, N.; Hussain, S.P.; Tzeng, E.E.; Geller, D.A.; Billiar, T.R.; Harris, C.C. 1998: P53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nature Medicine 4(12): 1371-1376
Bonnefoi, H.; Ducraux, A.; Movarekhi, S.; Pelte, M.F.; Bongard, S.; Lurati, E.; Iggo, R. 2002: P53 as a potential predictive factor of response to chemotherapy: feasibility of p53 assessment using a functional test in yeast from trucut biopsies in breast cancer patients. British Journal of Cancer 86(5): 750-755
Sun, J.; Wen, Y.; Zhou, Y.; Jiang, Y.; Chen, Y.; Zhang, H.; Guan, L.; Yao, X.; Huang, M.; Bi, H. 2018: P53 attenuates acetaminophen-induced hepatotoxicity by regulating drug-metabolizing enzymes and transporter expression. Cell Death and Disease 9(5): 536
Jiang, M.; Axe, T.; Holgate, R.; Rubbi, C.P.; Okorokov, A.L.; Mee, T.; Milner, J. 2001: P53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene 20(39): 5449-5458
Xiao, G.; White, D.; Bargonetti, J. 1998: P53 binds to a constitutively nucleosome free region of the mdm2 gene. Oncogene 16(9): 1171-1181
Marchetti, A.; Cecchinelli, B.; D'Angelo, M.; D'Orazi, G.; Crescenzi, M.; Sacchi, A.; Soddu, S. 2004: P53 can inhibit cell proliferation through caspase-mediated cleavage of ERK2/MAPK. Cell Death and Differentiation 11(6): 596-607
Godefroy, N.; Lemaire, C.; Renaud, F.; Rincheval, V.; Perez, S.; Parvu-Ferecatu, I.; Mignotte, B.; Vayssière, J-L. 2004: P53 can promote mitochondria- and caspase-independent apoptosis. Cell Death and Differentiation 11(7): 785-787
Pan, Y.; Oprysko, P.R.; Asham, A.M.; Koch, C.J.; Simon, M.Celeste. 2004: P53 cannot be induced by hypoxia alone but responds to the hypoxic microenvironment. Oncogene 23(29): 4975-4983
Quesnel, S.; Verselis, S.; Portwine, C.; Garber, J.; White, M.; Feunteun, J.; Malkin, D.; Li, F.P. 1999: P53 compound heterozygosity in a severely affected child with Li-Fraumeni syndrome. Oncogene 18(27): 3970-3978
Yamane, K.; Katayama, E.; Tsuruo, T. 2001: P53 contains a DNA break-binding motif similar to the functional part of BRCT-related region of Rb. Oncogene 20(23): 2859-2867
Wang, S-Ping.; Wang, W-Lung.; Chang, Y-Leong.; Wu, C-Tu.; Chao, Y-Chih.; Kao, S-Han.; Yuan, A.; Lin, C-Wu.; Yang, S-Chen.; Chan, W-Kai.; Li, K-Chau.; Hong, T-Ming.; Yang, P-Chyr. 2009: P53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biology 11(6): 694-704
Marin Navarro, A.; Pronk, R.Johan.; van der Geest, A.Tjitske.; Oliynyk, G.; Nordgren, A.; Arsenian-Henriksson, M.; Falk, A.; Wilhelm, M. 2020: P53 controls genomic stability and temporal differentiation of human neural stem cells and affects neural organization in human brain organoids. Cell Death and Disease 11(1): 52
Salah, Z.; Haupt, S.; Maoz, M.; Baraz, L.; Rotter, V.; Peretz, T.; Haupt, Y.; Bar-Shavit, R. 2008: P53 controls hPar1 function and expression. Oncogene 27(54): 6866-6874
Li, M.; Hou, T.; Gao, T.; Lu, X.; Yang, Q.; Zhu, Q.; Li, Z.; Liu, C.; Mu, G.; Liu, G.; Bao, Y.; Wen, H.; Wang, L.; Wang, H.; Zhao, Y.; Gu, W.; Yang, Y.; Zhu, W-Guo. 2018: P53 cooperates with SIRT6 to regulate cardiolipin de novo biosynthesis. Cell Death and Disease 9(10): 941
Franklin, D.A.; He, Y.; Leslie, P.L.; Tikunov, A.P.; Fenger, N.; Macdonald, J.M.; Zhang, Y. 2016: P53 coordinates DNA repair with nucleotide synthesis by suppressing PFKFB3 expression and promoting the pentose phosphate pathway. Scientific Reports 6: 38067
Zhu, G.; Ying, Y.; Ji, K.; Duan, X.; Mai, T.; Kim, J.; Li, Q.; Yu, L.; Xu, Y. 2020: P53 coordinates glucose and choline metabolism during the mesendoderm differentiation of human embryonic stem cells. Stem Cell Research 49: 102067
Landesman-Bollag, E.; Channavajhala, P.L.; Cardiff, R.D.; Seldin, D.C. 1998: P53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene 16(23): 2965-2974
Burr, K.L-A.; Smith, A.G.; Dubrova, Y.E. 2005: P53 deficiency does not affect mutation rate in the mouse germline. Oncogene 24(26): 4315-4318
Marxer, M.; Ma, H.T.; Man, W.Y.; Poon, R.Y.C. 2014: P53 deficiency enhances mitotic arrest and slippage induced by pharmacological inhibition of Aurora kinases. Oncogene 33(27): 3550-3560
Sphyris, N.; Harrison, D.J. 2005: P53 deficiency exacerbates pleiotropic mitotic defects, changes in nuclearity and polyploidy in transdifferentiating pancreatic acinar cells. Oncogene 24(13): 2184-2194
Chiche, A.; Moumen, M.; Romagnoli, M.; Petit, V.; Lasla, H.; Jézéquel, P.; de la Grange, P.; Jonkers, J.; Deugnier, M-A.; Glukhova, M.A.; Faraldo, M.M. 2017: P53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene 36(17): 2355-2365
Gao, J.; Huang, H-Ying.; Pak, J.; Cheng, J.; Zhang, Z-Ting.; Shapiro, E.; Pellicer, A.; Sun, T-Tien.; Wu, X-Ru. 2004: P53 deficiency provokes urothelial proliferation and synergizes with activated Ha-ras in promoting urothelial tumorigenesis. Oncogene 23(3): 687-696
Plaster, N.; Sonntag, C.; Busse, C.E.; Hammerschmidt, M. 2006: P53 deficiency rescues apoptosis and differentiation of multiple cell types in zebrafish flathead mutants deficient for zygotic DNA polymerase delta1. Cell Death and Differentiation 13(2): 223-235
Begus-Nahrmann, Y.; Lechel, Aé.; Obenauf, A.C.; Nalapareddy, K.; Peit, E.; Hoffmann, E.; Schlaudraff, F.; Liss, B.; Schirmacher, P.; Kestler, H.; Danenberg, E.; Barker, N.; Clevers, H.; Speicher, M.R.; Rudolph, K.Lenhard. 2009: P53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nature Genetics 41(10): 1138-1143
Feng, X.; Liu, X.; Zhang, W.; Xiao, W. 2011: P53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO Journal 30(16): 3397-3415
Aoubala, M.; Murray-Zmijewski, F.; Khoury, M.P.; Fernandes, K.; Perrier, S.; Bernard, H.; Prats, A-C.; Lane, D.P.; Bourdon, J-C. 2011: P53 directly transactivates Δ133p53α, regulating cell fate outcome in response to DNA damage. Cell Death and Differentiation 18(2): 248-258
Akdemir, F.; Christich, A.; Sogame, N.; Chapo, J.; Abrams, J.M. 2007: P53 directs focused genomic responses in Drosophila. Oncogene 26(36): 5184-5193
Wang, Y.; Zhu, S.; Cloughesy, T.F.; Liau, L.M.; Mischel, P.S. 2004: P53 disruption profoundly alters the response of human glioblastoma cells to DNA topoisomerase I inhibition. Oncogene 23(6): 1283-1290
Zhang, Y.; Liao, J-Ming.; Zeng, S.X.; Lu, H. 2011: P53 downregulates Down syndrome-associated DYRK1A through miR-1246. Embo Reports 12(8): 811-817
Rother, K.; Kirschner, R.; Sänger, K.; Böhlig, L.; Mössner, J.; Engeland, K. 2007: P53 downregulates expression of the G1/S cell cycle phosphatase Cdc25A. Oncogene 26(13): 1949-1953
Jaber, S.; Toufektchan, Eéonore.; Lejour, V.; Bardot, B.; Toledo, F. 2016: P53 downregulates the Fanconi anaemia DNA repair pathway. Nature Communications 7: 11091
Hsieh, P-C.; Chang, J-C.; Sun, W-T.; Hsieh, S-C.; Wang, M-C.; Wang, F-F. 2007: P53 downstream target DDA3 is a novel microtubule-associated protein that interacts with end-binding protein EB3 and activates beta-catenin pathway. Oncogene 26(34): 4928-4940
Rozan, L.M.; El-Deiry, W.S. 2007: P53 downstream target genes and tumor suppression: a classical view in evolution. Cell Death and Differentiation 14(1): 3-9
Sax, J.K.; El-Deiry, W.S. 2003: P53 downstream targets and chemosensitivity. Cell Death and Differentiation 10(4): 413-417
Jentsch, M.; Snyder, P.; Sheng, C.; Cristiano, E.; Loewer, A. 2020: P53 dynamics in single cells are temperature-sensitive. Scientific Reports 10(1): 1481
Wu, M.; Ye, H.; Tang, Z.; Shao, C.; Lu, G.; Chen, B.; Yang, Y.; Wang, G.; Hao, H. 2017: P53 dynamics orchestrates with binding affinity to target genes for cell fate decision. Cell Death and Disease 8(10): E3130
Terakawa, T.; Takada, S. 2015: P53 dynamics upon response element recognition explored by molecular simulations. Scientific Reports 5: 17107
Stewart-Ornstein, J.; Iwamoto, Y.; Miller, M.A.; Prytyskach, M.A.; Ferretti, S.; Holzer, P.; Kallen, J.; Furet, P.; Jambhekar, A.; Forrester, W.C.; Weissleder, R.; Lahav, G. 2021: P53 dynamics vary between tissues and are linked with radiation sensitivity. Nature Communications 12(1): 898
Bakhanashvili, M. 2001: P53 enhances the fidelity of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene 20(52): 7635-7644
Vega, F.J.; Iniesta, P.; Caldés, T.; Sanchez, A.; López, J.A.; de Juan, C.; Diaz-Rubio, E.; Torres, A.; Balibrea, J.L.; Benito, M. 1997: P53 exon 5 mutations as a prognostic indicator of shortened survival in non-small-cell lung cancer. British Journal of Cancer 76(1): 44-51
Wadayama, B.; Toguchida, J.; Yamaguchi, T.; Sasaki, M.S.; Yamamuro, T. 1993: P53 expression and its relationship to DNA alterations in bone and soft tissue sarcomas. British Journal of Cancer 68(6): 1134-1139
Yang, C.M.; Kang, M.-K.; Jung, W.-J.; Joo, J.-S.; Kim, Y.-J.; Choi, Y.; Kim, H.-P. 2021: P53 expression confers sensitivity to 5-fluorouracil via distinct chromatin accessibility dynamics in human colorectal cancer. Oncology Letters 21(3): 226
Gupta, R.K.; Norton, A.J.; Thompson, I.W.; Lister, T.A.; Bodmer, J.G. 1992: P53 expression in Reed-Sternberg cells of Hodgkin's disease. British Journal of Cancer 66(4): 649-652
Hasebe, T.; Iwasaki, M.; Akashi-Tanaka, S.; Hojo, T.; Shibata, T.; Sasajima, Y.; Kinoshita, T.; Tsuda, H. 2010: P53 expression in tumor-stromal fibroblasts forming and not forming fibrotic foci in invasive ductal carcinoma of the breast. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 23(5): 662-672
Kagawa, S.; Fujiwara, T.; Hizuta, A.; Yasuda, T.; Zhang, W.W.; Roth, J.A.; Tanaka, N. 1997: P53 expression overcomes p21WAF1/CIP1-mediated G1 arrest and induces apoptosis in human cancer cells. Oncogene 15(16): 1903-1909
Oh, H.Jeong.; Bae, J.Mo.; Wen, X.; Jung, S.; Kim, Y.; Kim, K.Ju.; Cho, N-Yun.; Kim, J.Ho.; Han, S-Won.; Kim, T-You.; Kang, G.Hoon. 2019: P53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy. British Journal of Cancer 120(8): 797-805
Tong, D.R.; Zhou, W.; Katz, C.; Regunath, K.; Venkatesh, D.; Ihuegbu, C.; Manfredi, J.J.; Laptenko, O.; Prives, C. 2021: P53 Frameshift Mutations Couple Loss-of-Function with Unique Neomorphic Activities. Molecular Cancer Research: Mcr 19(9): 1522-1533
Gui, S.; Xie, X.; O'Neill, W.Q.; Chatfield-Reed, K.; Yu, J-Ge.; Teknos, T.N.; Pan, Q. 2020: P53 functional states are associated with distinct aldehyde dehydrogenase transcriptomic signatures. Scientific Reports 10(1): 1097
de Souza-Pinto, N.C.; Harris, C.C.; Bohr, V.A. 2004: P53 functions in the incorporation step in DNA base excision repair in mouse liver mitochondria. Oncogene 23(39): 6559-6568
Song, H.; Hollstein, M.; Xu, Y. 2007: P53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nature Cell Biology 9(5): 573-580
Quina, A.S.; Bastos-Silveira, C.; Miñarro, M.; Ventura, J.; Jiménez, R.; Paulo, O.S.; da Luz Mathias, M. 2015: P53 gene discriminates two ecologically divergent sister species of pine voles. Heredity 115(5): 444-451
Thompson, A.M.; Steel, C.M.; Chetty, U.; Hawkins, R.A.; Miller, W.R.; Carter, D.C.; Forrest, A.P.; Evans, H.J. 1990: P53 gene mRNA expression and chromosome 17p allele loss in breast cancer. British Journal of Cancer 61(1): 74-78
Bian, Y.S.; Osterheld, M.C.; Bosman, F.T.; Benhattar, J.; Fontolliet, C. 2001: P53 gene mutation and protein accumulation during neoplastic progression in Barrett's esophagus. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 14(5): 397-403
Rassidakis, G.Z.; Thomaides, A.; Wang, S.; Jiang, Y.; Fourtouna, A.; Lai, R.; Medeiros, L.J. 2005: P53 gene mutations are uncommon but p53 is commonly expressed in anaplastic large-cell lymphoma. Leukemia 19(9): 1663-1669
Draus, J.M.; Elliott, M.J.; Atienza, C.; Stilwell, A.; Wong, S.L.; Dong, Y.; Yang, H.; McMasters, K.M. 2001: P53 gene transfer does not enhance E2F-1-mediated apoptosis in human colon cancer cells. Experimental and Molecular Medicine 33(4): 209-219
Gottlieb, E. 2011: P53 guards the metabolic pathway less travelled. Nature Cell Biology 13(3): 195-197
Teoh, P.J.; Chung, T.H.; Sebastian, S.; Choo, S.N.; Yan, J.; Ng, S.B.; Fonseca, R.; Chng, W.J. 2014: P53 haploinsufficiency and functional abnormalities in multiple myeloma. Leukemia 28(10): 2066-2074
Okuyama, R.; Ogawa, E.; Nagoshi, H.; Yabuki, M.; Kurihara, A.; Terui, T.; Aiba, S.; Obinata, M.; Tagami, H.; Ikawa, S. 2007: P53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity. Oncogene 26(31): 4478-4488
Piaton, E.; Faÿnel, J.; Ruffion, A.; Lopez, J.G.; Perrin, P.; Devonec, M. 2005: P53 immunodetection of liquid-based processed urinary samples helps to identify bladder tumours with a higher risk of progression. British Journal of Cancer 93(2): 242-247
Jacquemier, J.; Molès, J.P.; Penault-Llorca, F.; Adélaide, J.; Torrente, M.; Viens, P.; Birnbaum, D.; Theillet, C. 1994: P53 immunohistochemical analysis in breast cancer with four monoclonal antibodies: comparison of staining and PCR-SSCP results. British Journal of Cancer 69(5): 846-852
Serth, J.; Kuczyk, M.A.; Bokemeyer, C.; Hervatin, C.; Nafe, R.; Tan, H.K.; Jonas, U. 1995: P53 immunohistochemistry as an independent prognostic factor for superficial transitional cell carcinoma of the bladder. British Journal of Cancer 71(1): 201-205
Soini, Y.; Turpeenniemi-Hujanen, T.; Kamel, D.; Autio-Harmainen, H.; Risteli, J.; Risteli, L.; Nuorva, K.; Pääkkö, P.; Vähäkangas, K. 1993: P53 immunohistochemistry in transitional cell carcinoma and dysplasia of the urinary bladder correlates with disease progression. British Journal of Cancer 68(5): 1029-1035
Yamaguchi, A.; Nakagawara, G.; Kurosaka, Y.; Nishimura, G.; Yonemura, Y.; Miyazaki, I. 1993: P53 immunoreaction in endoscopic biopsy specimens of colorectal cancer, and its prognostic significance. British Journal of Cancer 68(2): 399-402
Schoop, I.; Maleki, S.S.; Behrens, H.-M.; Krüger, S.; Haag, J.; Röcken, C. 2020: P53 immunostaining cannot be used to predict TP53 mutations in gastric cancer: results from a large Central European cohort. Human Pathology 105: 53-66
Nachmias, B.; Rund, D. 2021: P53 in Acute Myeloid Leukemia-Still a significant other. Leukemia and Lymphoma 2021: 1-3
Quiñones, M.; Al-Massadi, O.; Folgueira, C.; Bremser, S.; Gallego, Ría.; Torres-Leal, L.; Haddad-Tóvolli, R.; García-Caceres, C.; Hernandez-Bautista, R.; Lam, B.Y.H.; Beiroa, D.; Sanchez-Rebordelo, E.; Senra, A.; Malagon, J.A.; Valerio, P.; Fondevila, M.F.; Fernø, J.; Malagon, M.M.; Contreras, R.; Pfluger, P.; Brüning, J.C.; Yeo, G.; Tschöp, M.; Diéguez, C.; López, M.; Claret, M.; Kloppenburg, P.; Sabio, G.; Nogueiras, R. 2018: P53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nature Communications 9(1): 3432
Scott, N.; Sagar, P.; Stewart, J.; Blair, G.E.; Dixon, M.F.; Quirke, P. 1991: P53 in colorectal cancer: clinicopathological correlation and prognostic significance. British Journal of Cancer 63(2): 317-319
Vousden, K.H.; Lane, D.P. 2007: P53 in health and disease. Nature Reviews. Molecular Cell Biology 8(4): 275-283
Curtin, J.C.; Spinella, M.J. 2005: P53 in human embryonal carcinoma: identification of a transferable, transcriptional repression domain in the N-terminal region of p53. Oncogene 24(9): 1481-1490
Bakhanashvili, M.; Grinberg, S.; Bonda, E.; Simon, A.J.; Moshitch-Moshkovitz, S.; Rahav, G. 2008: P53 in mitochondria enhances the accuracy of DNA synthesis. Cell Death and Differentiation 15(12): 1865-1874
Mor, O.; Read, M.; Fried, M. 1997: P53 in polyoma virus transformed REF52 cells. Oncogene 15(25): 3113-3119
Gatz, S.A.; Wiesmüller, L. 2006: P53 in recombination and repair. Cell Death and Differentiation 13(6): 1003-1016
Kruiswijk, F.; Labuschagne, C.F.; Vousden, K.H. 2015: P53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature Reviews. Molecular Cell Biology 16(7): 393-405
Wang, B.; Niu, D.; Lai, L.; Ren, E.Chee. 2013: P53 increases MHC class I expression by upregulating the endoplasmic reticulum aminopeptidase ERAP1. Nature Communications 4: 2359
Ng, K.P.; Ebrahem, Q.; Negrotto, S.; Mahfouz, R.Z.; Link, K.A.; Hu, Z.; Gu, X.; Advani, A.; Kalaycio, M.; Sobecks, R.; Sekeres, M.; Copelan, E.; Radivoyevitch, T.; Maciejewski, J.; Mulloy, J.C.; Saunthararajah, Y. 2011: P53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia. Leukemia 25(11): 1739-1750
Yang, T.; Namba, H.; Hara, T.; Takmura, N.; Nagayama, Y.; Fukata, S.; Ishikawa, N.; Kuma, K.; Ito, K.; Yamashita, S. 1997: P53 induced by ionizing radiation mediates DNA end-jointing activity, but not apoptosis of thyroid cells. Oncogene 14(13): 1511-1519
Hao, Q.; Chen, J.; Liao, J.; Huang, Y.; Gan, Y.; Larisch, S.; Zeng, S.X.; Lu, H.; Zhou, X. 2021: P53 induces ARTS to promote mitochondrial apoptosis. Cell Death and Disease 12(2): 204
Zhu, K.; Wang, J.; Zhu, J.; Jiang, J.; Shou, J.; Chen, X. 1999: P53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene 18(54): 7740-7747
Liao, H.; Gaur, A.; Mauvais, C.; Denicourt, C. 2021: P53 induces a survival transcriptional response after nucleolar stress. Molecular Biology of the Cell 32(20): Ar3
Holmgren, L.; Jackson, G.; Arbiser, J. 1998: P53 induces angiogenesis-restricted dormancy in a mouse fibrosarcoma. Oncogene 17(7): 819-824
Lin, T.; Chao, C.; Saito, S'ichi.; Mazur, S.J.; Murphy, M.E.; Appella, E.; Xu, Y. 2005: P53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biology 7(2): 165-171
Adriaens, C.; Standaert, L.; Barra, J.; Latil, M.; Verfaillie, A.; Kalev, P.; Boeckx, B.; Wijnhoven, P.W.G.; Radaelli, E.; Vermi, W.; Leucci, E.; Lapouge, Gëlle.; Beck, B.; van den Oord, J.; Nakagawa, S.; Hirose, T.; Sablina, A.A.; Lambrechts, D.; Aerts, S.; Blanpain, Cédric.; Marine, J-Christophe. 2016: P53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nature Medicine 22(8): 861-868
Yang, R.; Xu, X.; Li, H.; Chen, J.; Xiang, X.; Dong, Z.; Zhang, D. 2017: P53 induces miR199a-3p to suppress SOCS7 for STAT3 activation and renal fibrosis in UUO. Scientific Reports 7: 43409
Yoon, M-Ho.; Kang, S-Mi.; Lee, S-Jin.; Woo, T-Gyun.; Oh, A-Young.; Park, S.; Ha, N-Chul.; Park, B-Joon. 2019: P53 induces senescence through Lamin A/C stabilization-mediated nuclear deformation. Cell Death and Disease 10(2): 107
Friborg, J.; Kong, W.; Hottiger, M.O.; Nabel, G.J. 1999: P53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402(6764): 889-894
Ihry, R.J.; Worringer, K.A.; Salick, M.R.; Frias, E.; Ho, D.; Theriault, K.; Kommineni, S.; Chen, J.; Sondey, M.; Ye, C.; Randhawa, R.; Kulkarni, T.; Yang, Z.; McAllister, G.; Russ, C.; Reece-Hoyes, J.; Forrester, W.; Hoffman, G.R.; Dolmetsch, R.; Kaykas, A. 2018: P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nature Medicine 24(7): 939-946
Taylor, W.R.; Agarwal, M.L.; Agarwal, A.; Stacey, D.W.; Stark, G.R. 1999: P53 inhibits entry into mitosis when DNA synthesis is blocked. Oncogene 18(2): 283-295
Nazeer, F.I.; Devany, E.; Mohammed, S.; Fonseca, D.; Akukwe, B.; Taveras, C.; Kleiman, F.E. 2011: P53 inhibits mRNA 3' processing through its interaction with the CstF/BARD1 complex. Oncogene 30(27): 3073-3083
Pieles, O.; Reck, A.; Reichert, T.E.; Morsczeck, C. 2020: P53 inhibits the osteogenic differentiation but does not induce senescence in human dental follicle cells. Differentiation; Research in Biological Diversity 114: 20-26
Matas, D.; Milyavsky, M.; Shats, I.; Nissim, L.; Goldfinger, N.; Rotter, V. 2004: P53 is a regulator of macrophage differentiation. Cell Death and Differentiation 11(4): 458-467
Allende-Vega, N.; Dayal, S.; Agarwala, U.; Sparks, A.; Bourdon, J-C.; Saville, M.K. 2013: P53 is activated in response to disruption of the pre-mRNA splicing machinery. Oncogene 32(1): 1-14
Yan, H.; Solozobova, V.; Zhang, P.; Armant, O.; Kuehl, B.; Brenner-Weiss, G.; Blattner, C. 2015: P53 is active in murine stem cells and alters the transcriptome in a manner that is reminiscent of mutant p53. Cell Death and Disease 6: E1662
Giannakakou, P.; Sackett, D.L.; Ward, Y.; Webster, K.R.; Blagosklonny, M.V.; Fojo, T. 2000: P53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nature Cell Biology 2(10): 709-717
Grombacher, T.; Eichhorn, U.; Kaina, B. 1998: P53 is involved in regulation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) by DNA damaging agents. Oncogene 17(7): 845-851
Cerone, M.A.; Marchetti, A.; Bossi, G.; Blandino, G.; Sacchi, A.; Soddu, S. 2000: P53 is involved in the differentiation but not in the differentiation-associated apoptosis of myoblasts. Cell Death and Differentiation 7(5): 506-508
Sandy, P.; Gostissa, M.; Fogal, V.; Cecco, L.D.; Szalay, K.; Rooney, R.J.; Schneider, C.; Del Sal, G. 2000: P53 is involved in the p120E4F-mediated growth arrest. Oncogene 19(2): 188-199
Rokhlin, O.W.; Gudkov, A.V.; Kwek, S.; Glover, R.A.; Gewies, A.S.; Cohen, M.B. 2000: P53 is involved in tumor necrosis factor-alpha-induced apoptosis in the human prostatic carcinoma cell line LNCaP. Oncogene 19(15): 1959-1968
Knippschild, U.; Milne, D.M.; Campbell, L.E.; DeMaggio, A.J.; Christenson, E.; Hoekstra, M.F.; Meek, D.W. 1997: P53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase-directed drugs. Oncogene 15(14): 1727-1736
Huang, J.; Sengupta, R.; Espejo, A.B.; Lee, M.Gyu.; Dorsey, J.A.; Richter, M.; Opravil, S.; Shiekhattar, R.; Bedford, M.T.; Jenuwein, T.; Berger, S.L. 2007: P53 is regulated by the lysine demethylase LSD1. Nature 449(7158): 105-108
Molchadsky, A.; Ezra, O.; Amendola, P.G.; Krantz, D.; Kogan-Sakin, I.; Buganim, Y.; Rivlin, N.; Goldfinger, N.; Folgiero, V.; Falcioni, R.; Sarig, R.; Rotter, V. 2013: P53 is required for brown adipogenic differentiation and has a protective role against diet-induced obesity. Cell Death and Differentiation 20(5): 774-783
Zhang, J.; Yan, W.; Chen, X. 2006: P53 is required for nerve growth factor-mediated differentiation of PC12 cells via regulation of TrkA levels. Cell Death and Differentiation 13(12): 2118-2128
Geden, M.J.; Romero, S.E.; Deshmukh, M. 2021: P53 is required for nuclear but not mitochondrial DNA damage-induced degeneration. Cell Death and Disease 12(1): 104
Lowe, S.W.; Schmitt, E.M.; Smith, S.W.; Osborne, B.A.; Jacks, T. 1993: P53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362(6423): 847-849
Takahashi, R.; Giannini, C.; Sarkaria, J.N.; Schroeder, M.; Rogers, J.; Mastroeni, D.; Scrable, H. 2013: P53 isoform profiling in glioblastoma and injured brain. Oncogene 32(26): 3165-3174
Ye, S.; Zhao, T.; Zhang, W.; Tang, Z.; Gao, C.; Ma, Z.; Xiong, J-Wei.; Peng, J.; Tan, W-Qiang.; Chen, J. 2020: P53 isoform Δ113p53 promotes zebrafish heart regeneration by maintaining redox homeostasis. Cell Death and Disease 11(7): 568
Gong, L.; Gong, H.; Pan, X.; Chang, C.; Ou, Z.; Ye, S.; Yin, L.; Yang, L.; Tao, T.; Zhang, Z.; Liu, C.; Lane, D.P.; Peng, J.; Chen, J. 2015: P53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Research 25(3): 351-369
Fujita, K.; Mondal, A.M.; Horikawa, I.; Nguyen, G.H.; Kumamoto, K.; Sohn, J.J.; Bowman, E.D.; Mathe, E.A.; Schetter, A.J.; Pine, S.R.; Ji, H.; Vojtesek, B.; Bourdon, J-Christophe.; Lane, D.P.; Harris, C.C. 2009: P53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nature Cell Biology 11(9): 1135-1142
Guo, Y.; Rall-Scharpf, M.; Bourdon, J-Christophe.; Wiesmüller, L.; Biber, S. 2021: P53 isoforms differentially impact on the POLι dependent DNA damage tolerance pathway. Cell Death and Disease 12(10): 941
Olivares-Illana, V.; Fåhraeus, R. 2010: P53 isoforms gain functions. Oncogene 29(37): 5113-5119
Turnquist, C.; Horikawa, I.; Foran, E.; Major, E.O.; Vojtesek, B.; Lane, D.P.; Lu, X.; Harris, B.T.; Harris, C.C. 2016: P53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death and Differentiation 23(9): 1515-1528
von Muhlinen, N.; Horikawa, I.; Alam, F.; Isogaya, K.; Lissa, D.; Vojtesek, B.; Lane, D.P.; Harris, C.C. 2018: P53 isoforms regulate premature aging in human cells. Oncogene 37(18): 2379-2393
Garnett, S.; Dutchak, K.L.; McDonough, R.V.; Dankort, D. 2017: P53 loss does not permit escape from Braf V600E -induced senescence in a mouse model of lung cancer. Oncogene 36(45): 6325-6335
Alexandrova, E.M.; Mirza, S.A.; Xu, S.; Schulz-Heddergott, R.; Marchenko, N.D.; Moll, U.M. 2017: P53 loss-of-heterozygosity is a necessary prerequisite for mutant p53 stabilization and gain-of-function in vivo. Cell Death and Disease 8(3): E2661
Wasylyk, C.; Salvi, R.; Argentini, M.; Dureuil, C.; Delumeau, I.; Abecassis, J.; Debussche, L.; Wasylyk, B. 1999: P53 mediated death of cells overexpressing MDM2 by an inhibitor of MDM2 interaction with p53. Oncogene 18(11): 1921-1934
Pirollo, K.F.; Hao, Z.; Rait, A.; Jang, Y.J.; Fee, W.E.; Ryan, P.; Chiang, Y.; Chang, E.H. 1997: P53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene 14(14): 1735-1746
Thomas, A.; Giesler, T.; White, E. 2000: P53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway. Oncogene 19(46): 5259-5269
Zhao, B-xing.; Chen, H-zi.; Lei, N-zi.; Li, G-deng.; Zhao, W-xiu.; Zhan, Y-yan.; Liu, B.; Lin, S-cai.; Wu, Q. 2006: P53 mediates the negative regulation of MDM2 by orphan receptor TR3. EMBO Journal 25(24): 5703-5715
Jung, J.; Liao, H.; Coker, S.A.; Liang, H.; Hancock, J.F.; Denicourt, C.; Venkatachalam, K. 2021: P53 mitigates the effects of oncogenic HRAS in urothelial cells via the repression of MCOLN1. Iscience 24(7): 102701
Contadini, C.; Monteonofrio, L.; Virdia, I.; Prodosmo, A.; Valente, D.; Chessa, L.; Musio, A.; Fava, L.L.; Rinaldo, C.; Di Rocco, G.; Soddu, S. 2019: P53 mitotic centrosome localization preserves centrosome integrity and works as sensor for the mitotic surveillance pathway. Cell Death and Disease 10(11): 850
Rieckmann, T.; Kriegs, M.; Nitsch, L.; Hoffer, K.; Rohaly, G.; Kocher, S.; Petersen, C.; Dikomey, E.; Dornreiter, I.; Dahm-Daphi, J. 2013: P53 modulates homologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation. Oncogene 32(8): 968-975
Arias-Lopez, C.; Lazaro-Trueba, I.; Kerr, P.; Lord, C.J.; Dexter, T.; Iravani, M.; Ashworth, A.; Silva, A. 2006: P53 modulates homologous recombination by transcriptional regulation of the RAD51 gene. Embo Reports 7(2): 219-224
Wang, X.W.; Yeh, H.; Schaeffer, L.; Roy, R.; Moncollin, V.; Egly, J.M.; Wang, Z.; Freidberg, E.C.; Evans, M.K.; Taffe, B.G. 1995: P53 modulation of TFIIH-associated nucleotide excision repair activity. Nature Genetics 10(2): 188-195
Nistér, M.; Tang, M.; Zhang, X-Qun.; Yin, C.; Beeche, M.; Hu, X.; Enblad, G.; van Dyke, T.; Wahl, G.M. 2005: P53 must be competent for transcriptional regulation to suppress tumor formation. Oncogene 24(22): 3563-3573
Tyner, S.D.; Venkatachalam, S.; Choi, J.; Jones, S.; Ghebranious, N.; Igelmann, H.; Lu, X.; Soron, G.; Cooper, B.; Brayton, C.; Park, S.Hee.; Thompson, T.; Karsenty, G.; Bradley, A.; Donehower, L.A. 2002: P53 mutant mice that display early ageing-associated phenotypes. Nature 415(6867): 45-53
Campomenosi, P.; Monti, P.; Aprile, A.; Abbondandolo, A.; Frebourg, T.; Gold, B.; Crook, T.; Inga, A.; Resnick, M.A.; Iggo, R.; Fronza, G. 2001: P53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene 20(27): 3573-3579
Inga, A.; Monti, P.; Fronza, G.; Darden, T.; Resnick, M.A. 2001: P53 mutants exhibiting enhanced transcriptional activation and altered promoter selectivity are revealed using a sensitive, yeast-based functional assay. Oncogene 20(4): 501-513
Boehden, G.S.; Akyüz, N.; Roemer, K.; Wiesmüller, L. 2003: P53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair. Oncogene 22(26): 4111-4117
Adamson, D.J.; Thompson, W.D.; Dawson, A.A.; Bennett, B.; Haites, N.E. 1995: P53 mutation and expression in lymphoma. British Journal of Cancer 72(1): 150-154
Honda, K.; Sbisà, E.; Tullo, A.; Papeo, P.A.; Saccone, C.; Poole, S.; Pignatelli, M.; Mitry, R.R.; Ding, S.; Isla, A.; Davies, A.; Habib, N.A. 1998: P53 mutation is a poor prognostic indicator for survival in patients with hepatocellular carcinoma undergoing surgical tumour ablation. British Journal of Cancer 77(5): 776-782
Runnebaum, I.B.; Köhler, T.; Stickeler, E.; Kieback, H.R.; Kreienberg, R. 1996: P53 mutation is associated with high S-phase fraction in primary fallopian tube adenocarcinoma. British Journal of Cancer 74(8): 1157-1160
Crook, T.; Brooks, L.A.; Crossland, S.; Osin, P.; Barker, K.T.; Waller, J.; Philp, E.; Smith, P.D.; Yulug, I.; Peto, J.; Parker, G.; Allday, M.J.; Crompton, M.R.; Gusterson, B.A. 1998: P53 mutation with frequent novel condons but not a mutator phenotype in BRCA1- and BRCA2-associated breast tumours. Oncogene 17(13): 1681-1689
Mineta, H.; Borg, A.; Dictor, M.; Wahlberg, P.; Akervall, J.; Wennerberg, J. 1998: P53 mutation, but not p53 overexpression, correlates with survival in head and neck squamous cell carcinoma. British Journal of Cancer 78(8): 1084-1090
Baker, L.; Quinlan, P.R.; Patten, N.; Ashfield, A.; Birse-Stewart-Bell, L-J.; McCowan, C.; Bourdon, J-C.; Purdie, C.A.; Jordan, L.B.; Dewar, J.A.; Wu, L.; Thompson, A.M. 2010: P53 mutation, deprivation and poor prognosis in primary breast cancer. British Journal of Cancer 102(4): 719-726
Koh, J.Y.; Cho, N.P.; Kong, G.; Lee, J.D.; Yoon, K. 1998: P53 mutations and human papillomavirus DNA in oral squamous cell carcinoma: correlation with apoptosis. British Journal of Cancer 78(3): 354-359
Faille, A.; De Cremoux, P.; Extra, J.M.; Linares, G.; Espie, M.; Bourstyn, E.; De Rocquancourt, A.; Giacchetti, S.; Marty, M.; Calvo, F. 1994: P53 mutations and overexpression in locally advanced breast cancers. British Journal of Cancer 69(6): 1145-1150
Bailey, J.M.; Hendley, A.M.; Lafaro, K.J.; Pruski, M.A.; Jones, N.C.; Alsina, J.; Younes, M.; Maitra, A.; McAllister, F.; Iacobuzio-Donahue, C.A.; Leach, S.D. 2016: P53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene 35(32): 4282-4288
Vet, J.A.; Bringuier, P.P.; Poddighe, P.J.; Karthaus, H.F.; Debruyne, F.M.; Schalken, J.A. 1994: P53 mutations have no additional prognostic value over stage in bladder cancer. British Journal of Cancer 70(3): 496-500
McGregor, J.M.; Berkhout, R.J.; Rozycka, M.; ter Schegget, J.; Bouwes Bavinck, J.N.; Brooks, L.; Crook, T. 1997: P53 mutations implicate sunlight in post-transplant skin cancer irrespective of human papillomavirus status. Oncogene 15(14): 1737-1740
Muller, P.A.J.; Vousden, K.H. 2013: P53 mutations in cancer. Nature Cell Biology 15(1): 2-8
König, E.A.; Kusser, W.C.; Day, C.; Porzsolt, F.; Glickman, B.W.; Messer, G.; Schmid, M.; de Châtel, R.; Marcsek, Z.L.; Demeter, J. 2000: P53 mutations in hairy cell leukemia. Leukemia 14(4): 706-711
Zerp, S.F.; van Elsas, A.; Peltenburg, L.T.; Schrier, P.I. 1999: P53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis. British Journal of Cancer 79(5-6): 921-926
Takagi, Y.; Osada, H.; Kuroishi, T.; Mitsudomi, T.; Kondo, M.; Niimi, T.; Saji, S.; Gazdar, A.F.; Takahashi, T.; Minna, J.D.; Takahashi, T. 1998: P53 mutations in non-small-cell lung cancers occurring in individuals without a past history of active smoking. British Journal of Cancer 77(10): 1568-1572
Epstein, C.B.; Attiyeh, E.F.; Hobson, D.A.; Silver, A.L.; Broach, J.R.; Levine, A.J. 1998: P53 mutations isolated in yeast based on loss of transcription factor activity: similarities and differences from p53 mutations detected in human tumors. Oncogene 16(16): 2115-2122
Oren, M.; Kotler, E. 2016: P53 mutations promote proteasomal activity. Nature Cell Biology 18(8): 833-835
Nylander, K.; Nilsson, P.; Mehle, C.; Roos, G. 1995: P53 mutations, protein expression and cell proliferation in squamous cell carcinomas of the head and neck. British Journal of Cancer 71(4): 826-830
Zhang, D.W.; Jeang, K-T.; Lee, C.G.L. 2006: P53 negatively regulates the expression of FAT10, a gene upregulated in various cancers. Oncogene 25(16): 2318-2327
Quinn, D.I.; Stricker, P.D.; Kench, J.G.; Grogan, J.; Haynes, A-Maree.; Henshall, S.M.; Grygiel, J.J.; Delprado, W.; Turner, J.J.; Horvath, L.G.; Mahon, K.L. 2019: P53 nuclear accumulation as an early indicator of lethal prostate cancer. British Journal of Cancer 121(7): 578-583
Charni, M.; Aloni-Grinstein, R.; Molchadsky, A.; Rotter, V. 2017: P53 on the crossroad between regeneration and cancer. Cell Death and Differentiation 24(1): 8-14
Gallo, O.; Bianchi, S.; Giovannucci-Uzzielli, M.L.; Santoro, R.; Lenzi, S.; Salimbeni, C.; Abbruzzese, M.; Alajmo, E. 1995: P53 oncoprotein overexpression correlates with mutagen-induced chromosome fragility in head and neck cancer patients with multiple malignancies. British Journal of Cancer 71(5): 1008-1012
Garg, K.; Leitao, M.M.; Wynveen, C.A.; Sica, G.L.; Shia, J.; Shi, W.; Soslow, R.A. 2010: P53 overexpression in morphologically ambiguous endometrial carcinomas correlates with adverse clinical outcomes. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 23(1): 80-92
Ferrandina, G.; Fagotti, A.; Salerno, M.G.; Natali, P.G.; Mottolese, M.; Maneschi, F.; De Pasqua, A.; Benedetti-Panici, P.; Mancuso, S.; Scambia, G. 1999: P53 overexpression is associated with cytoreduction and response to chemotherapy in ovarian cancer. British Journal of Cancer 81(4): 733-740
Jiang, A.; Yu, C.; Zhang, P.; Chen, W.; Liu, W.; Hu, X.; Zhang, J. 2006: P53 overexpression represses androgen-mediated induction of NKX3.1 in a prostate cancer cell line. Experimental and Molecular Medicine 38(6): 625-633
Quintás-Cardama, A.; Hu, C.; Qutub, A.; Qiu, Y.H.; Zhang, X.; Post, S.M.; Zhang, N.; Coombes, K.; Kornblau, S.M. 2017: P53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia 31(6): 1296-1305
Battistella, M.; Cuccuini, W.; Elbouchtaoui, M.; Leboeuf, C.; Plassa, L-François.; Bouhidel, F.; Rigolet, A.; Meignin, Véronique.; Socié, Gérard.; Ratajczak, P.; Janin, A. 2014: P53 phosphorylation and TP53 copy-number alterations in chronic graft-versus-host oral lichen preceding squamous cell carcinoma. Journal of Investigative Dermatology 134(3): 864-867
Yu, T.; You, X.; Zhou, H.; Kang, A.; He, W.; Li, Z.; Li, B.; Xia, J.; Zhu, H.; Zhao, Y.; Yu, G.; Xiong, Y.; Yang, Y. 2020: P53 plays a central role in the development of osteoporosis. Aging 12(11): 10473-10487
Helland, A.; Langerød, A.; Johnsen, H.; Olsen, A.O.; Skovlund, E.; Børresen-Dale, A.L. 1998: P53 polymorphism and risk of cervical cancer. Nature 396(6711): 530
Josefsson, A.M.; Magnusson, P.K.; Ylitalo, N.; Quarforth-Tubbin, P.; Pontén, J.; Adami, H.O.; Gyllensten, U.B. 1998: P53 polymorphism and risk of cervical cancer. Nature 396(6711): 531; Author Reply 532
Hildesheim, A.; Schiffman, M.; Brinton, L.A.; Fraumeni, J.F.; Herrero, R.; Bratti, M.C.; Schwartz, P.; Mortel, R.; Barnes, W.; Greenberg, M.; McGowan, L.; Scott, D.R.; Martin, M.; Herrera, J.E.; Carrington, M. 1998: P53 polymorphism and risk of cervical cancer. Nature 396(6711): 531-532
Hsieh, L-L.; Huang, T-H.; Chen, I-H.; Liao, C-T.; Wang, H-M.; Lai, C-H.; Liou, S-H.; Chang, J.T-C.; Cheng, A-J. 2005: P53 polymorphisms associated with mutations in and loss of heterozygosity of the p53 gene in male oral squamous cell carcinomas in Taiwan. British Journal of Cancer 92(1): 30-35
Whibley, C.; Pharoah, P.D.P.; Hollstein, M. 2009: P53 polymorphisms: cancer implications. Nature Reviews. Cancer 9(2): 95-107
Tong, X.; Gu, J.; Chen, M.; Wang, T.; Zou, H.; Song, R.; Zhao, H.; Bian, J.; Liu, Z. 2020: P53 positively regulates osteoprotegerin-mediated inhibition of osteoclastogenesis by downregulating TSC2-induced autophagy in vitro. Differentiation; Research in Biological Diversity 114: 58-66
Yonekura, I.; Takai, K.; Asai, A.; Kawahara, N.; Kirino, T. 2006: P53 potentiates hippocampal neuronal death caused by global ischemia. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 26(10): 1332-1340
Farhang Ghahremani, M.; Goossens, S.; Nittner, D.; Bisteau, X.; Bartunkova, S.; Zwolinska, A.; Hulpiau, P.; Haigh, K.; Haenebalcke, L.; Drogat, B.; Jochemsen, A.; Roger, P.P.; Marine, J-C.; Haigh, J.J. 2013: P53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. Cell Death and Differentiation 20(7): 888-897
Wang, X.; Wu, Z.; Li, Y.; Yang, Y.; Xiao, C.; Liu, X.; Xiang, X.; Wei, J.; Shao, D.; Liu, K.; Deng, X.; Wu, J.; Qiu, Y.; Li, B.; Ma, Z. 2020: P53 promotes ZDHHC1-mediated IFITM3 palmitoylation to inhibit Japanese encephalitis virus replication. Plos Pathogens 16(10): E1009035
Royds, J.A.; Hibma, M.; Dix, B.R.; Hananeia, L.; Russell, I.A.; Wiles, A.; Wynford-Thomas, D.; Braithwaite, A.W. 2006: P53 promotes adenoviral replication and increases late viral gene expression. Oncogene 25(10): 1509-1520
Nam, S.Y.; Sabapathy, K. 2011: P53 promotes cellular survival in a context-dependent manner by directly inducing the expression of haeme-oxygenase-1. Oncogene 30(44): 4476-4486
Zheng, H.; Chen, L.; Pledger, W.J.; Fang, J.; Chen, J. 2014: P53 promotes repair of heterochromatin DNA by regulating JMJD2b and SUV39H1 expression. Oncogene 33(6): 734-744
Jiang, W.; Ananthaswamy, H.N.; Muller, H.K.; Kripke, M.L. 1999: P53 protects against skin cancer induction by UV-B radiation. Oncogene 18(29): 4247-4253
Kumari, A.; Schultz, N.; Helleday, T. 2004: P53 protects from replication-associated DNA double-strand breaks in mammalian cells. Oncogene 23(13): 2324-2329
Jaks, V.; Jõers, A.; Kristjuhan, A.; Maimets, T. 2001: P53 protein accumulation in addition to the transactivation activity is required for p53-dependent cell cycle arrest after treatment of cells with camptothecin. Oncogene 20(10): 1212-1219
Yang-Hartwich, Y.; Soteras, M.G.; Lin, Z.P.; Holmberg, J.; Sumi, N.; Craveiro, V.; Liang, M.; Romanoff, E.; Bingham, J.; Garofalo, F.; Alvero, A.; Mor, G. 2015: P53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene 34(27): 3605-3616
Horne, G.M.; Anderson, J.J.; Tiniakos, D.G.; McIntosh, G.G.; Thomas, M.D.; Angus, B.; Henry, J.A.; Lennard, T.W.; Horne, C.H. 1996: P53 protein as a prognostic indicator in breast carcinoma: a comparison of four antibodies for immunohistochemistry. British Journal of Cancer 73(1): 29-35
Govender, D.; Harilal, P.; Hadley, G.P.; Chetty, R. 1998: P53 protein expression in nephroblastomas: a predictor of poor prognosis. British Journal of Cancer 77(2): 314-318
Iuzzolino, P.; Ghimenton, C.; Nicolato, A.; Giorgiutti, F.; Fina, P.; Doglioni, C.; Barbareschi, M. 1994: P53 protein in low-grade astrocytomas: a study with long-term follow-up. British Journal of Cancer 69(3): 586-591
Levesque, M.A.; D'Costa, M.; Diamandis, E.P. 1996: P53 protein is absent from the serum of patients with lung cancer. British Journal of Cancer 74(9): 1434-1440
Tamir, Y.; Bengal, E. 1998: P53 protein is activated during muscle differentiation and participates with MyoD in the transcription of muscle creatine kinase gene. Oncogene 17(3): 347-356
Jaros, E.; Lunec, J.; Perry, R.H.; Kelly, P.J.; Pearson, A.D. 1993: P53 protein overexpression identifies a group of central primitive neuroectodermal tumours with poor prognosis. British Journal of Cancer 68(4): 801-807
Lee, E.J.; Gerhold, M.; Palmer, M.W.; Christen, R.D. 2003: P53 protein regulates the effects of amifostine on apoptosis, cell cycle progression, and cytoprotection. British Journal of Cancer 88(5): 754-759
Midgley, C.A.; Lane, D.P. 1997: P53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15(10): 1179-1189
Courtois, Séphanie.; Caron de Fromentel, C.; Hainaut, P. 2004: P53 protein variants: structural and functional similarities with p63 and p73 isoforms. Oncogene 23(3): 631-638
Schneider, J.; Presek, P.; Braun, A.; Bauer, P.; Konietzko, N.; Wiesner, B.; Woitowitz, H.J. 1999: P53 protein, EGF receptor, and anti-p53 antibodies in serum from patients with occupationally derived lung cancer. British Journal of Cancer 80(12): 1987-1994
Hafner, A.; Stewart-Ornstein, J.; Purvis, J.E.; Forrester, W.C.; Bulyk, M.L.; Lahav, G. 2017: P53 pulses lead to distinct patterns of gene expression albeit similar DNA-binding dynamics. Nature Structural and Molecular Biology 24(10): 840-847
Moretti, F.; Farsetti, A.; Soddu, S.; Misiti, S.; Crescenzi, M.; Filetti, S.; Andreoli, M.; Sacchi, A.; Pontecorvi, A. 1997: P53 re-expression inhibits proliferation and restores differentiation of human thyroid anaplastic carcinoma cells. Oncogene 14(6): 729-740
Pawge, G.; Khatik, G.L. 2021: P53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochemical Pharmacology 190: 114651
Winters, Z.E.; Ongkeko, W.M.; Harris, A.L.; Norbury, C.J. 1998: P53 regulates Cdc2 independently of inhibitory phosphorylation to reinforce radiation-induced G2 arrest in human cells. Oncogene 17(6): 673-684
Miki, T.; Matsumoto, T.; Zhao, Z.; Lee, C.Chi. 2013: P53 regulates Period2 expression and the circadian clock. Nature Communications 4: 2444
Lin, J.; Tang, H.; Jin, X.; Jia, G.; Hsieh, J-Tsong. 2002: P53 regulates Stat3 phosphorylation and DNA binding activity in human prostate cancer cells expressing constitutively active Stat3. Oncogene 21(19): 3082-3088
Montero, J.; Dutta, C.; van Bodegom, D.; Weinstock, D.; Letai, A. 2013: P53 regulates a non-apoptotic death induced by ROS. Cell Death and Differentiation 20(11): 1465-1474
Jiang, P.; Du, W.; Wang, X.; Mancuso, A.; Gao, X.; Wu, M.; Yang, X. 2011: P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nature Cell Biology 13(3): 310-316
Sawada, M.; Nakashima, S.; Kiyono, T.; Nakagawa, M.; Yamada, J.; Yamakawa, H.; Banno, Y.; Shinoda, J.; Nishimura, Y.; Nozawa, Y.; Sakai, N. 2001: P53 regulates ceramide formation by neutral sphingomyelinase through reactive oxygen species in human glioma cells. Oncogene 20(11): 1368-1378
Chang, C-Ju.; Chao, C-Hong.; Xia, W.; Yang, J-Yen.; Xiong, Y.; Li, C-Wei.; Yu, W-Hsuan.; Rehman, S.K.; Hsu, J.L.; Lee, H-Huan.; Liu, M.; Chen, C-Te.; Yu, D.; Hung, M-Chie. 2011: P53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology 13(3): 317-323
Kawauchi, K.; Araki, K.; Tobiume, K.; Tanaka, N. 2008: P53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nature Cell Biology 10(5): 611-618
Hu, W.; Feng, Z.; Teresky, A.K.; Levine, A.J. 2007: P53 regulates maternal reproduction through LIF. Nature 450(7170): 721-724
Huang, Y.; Yu, P.; Li, W.; Ren, G.; Roberts, A.I.; Cao, W.; Zhang, X.; Su, J.; Chen, X.; Chen, Q.; Shou, P.; Xu, C.; Du, L.; Lin, L.; Xie, N.; Zhang, L.; Wang, Y.; Shi, Y. 2014: P53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene 33(29): 3830-3838
Laezza, C.; D'Alessandro, A.; Di Croce, L.; Picardi, P.; Ciaglia, E.; Pisanti, S.; Malfitano, A.M.; Comegna, M.; Faraonio, R.; Gazzerro, P.; Bifulco, M. 2015: P53 regulates the mevalonate pathway in human glioblastoma multiforme. Cell Death and Disease 6: E1909
Marcel, V.; Vijayakumar, V.; Fernández-Cuesta, L.; Hafsi, H.; Sagne, C.; Hautefeuille, A.; Olivier, M.; Hainaut, P. 2010: P53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene 29(18): 2691-2700
Li, L.; Mao, Y.; Zhao, L.; Li, L.; Wu, J.; Zhao, M.; Du, W.; Yu, L.; Jiang, P. 2019: P53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis. Nature 567(7747): 253-256
Budde, A.; Grummt, I. 1999: P53 represses ribosomal gene transcription. Oncogene 18(4): 1119-1124
Ji, Z.; Njauw, C.Ni.; Taylor, M.; Neel, V.; Flaherty, K.T.; Tsao, H. 2012: P53 rescue through HDM2 antagonism suppresses melanoma growth and potentiates MEK inhibition. Journal of Investigative Dermatology 132(2): 356-364
Harris, C.R.; Dewan, A.; Zupnick, A.; Normart, R.; Gabriel, A.; Prives, C.; Levine, A.J.; Hoh, J. 2009: P53 responsive elements in human retrotransposons. Oncogene 28(44): 3857-3865
Lozano, G.; Elledge, S.J. 2000: P53 sends nucleotides to repair DNA. Nature 404(6773): 24-25
Furth, N.; Aylon, Y.; Oren, M. 2018: P53 shades of Hippo. Cell Death and Differentiation 25(1): 81-92
Furth, N.; Aylon, Y.; Oren, M. 2018: P53 shades of Hippo. Cell Death and Differentiation 25(1): 81-92
Peterson, L.F.; Mitrikeska, E.; Giannola, D.; Lui, Y.; Sun, H.; Bixby, D.; Malek, S.N.; Donato, N.J.; Wang, S.; Talpaz, M. 2011: P53 stabilization induces apoptosis in chronic myeloid leukemia blast crisis cells. Leukemia 25(5): 761-769
Marine, J-C. 2010: P53 stabilization: the importance of nuclear import. Cell Death and Differentiation 17(2): 191-192
Lopez-Crapez, E.; Bibeau, F.; Thézenas, S.; Ychou, M.; Simony-Lafontaine, J.; Thirion, A.; Azria, D.; Grenier, J.; Senesse, P. 2005: P53 status and response to radiotherapy in rectal cancer: a prospective multilevel analysis. British Journal of Cancer 92(12): 2114-2121
Rosenfeldt, M.T.; O'Prey, J.; Morton, J.P.; Nixon, C.; MacKay, G.; Mrowinska, A.; Au, A.; Rai, T.Singh.; Zheng, L.; Ridgway, R.; Adams, P.D.; Anderson, K.I.; Gottlieb, E.; Sansom, O.J.; Ryan, K.M. 2013: P53 status determines the role of autophagy in pancreatic tumour development. Nature 504(7479): 296-300
Maughan, B.L.; Guedes, L.B.; Boucher, K.; Rajoria, G.; Liu, Z.; Klimek, S.; Zoino, R.; Antonarakis, E.S.; Lotan, T.L. 2018: P53 status in the primary tumor predicts efficacy of subsequent abiraterone and enzalutamide in castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases 21(2): 260-268
Wilson, G.D.; Richman, P.I.; Dische, S.; Saunders, M.I.; Robinson, B.; Daley, F.M.; Ross, D.A. 1995: P53 status of head and neck cancer: relation to biological characteristics and outcome of radiotherapy. British Journal of Cancer 71(6): 1248-1252
Zheng, A.; Castren, K.; Säily, M.; Savolainen, E.R.; Koistinen, P.; Vähäkangas, K. 1999: P53 status of newly established acute myeloid leukaemia cell lines. British Journal of Cancer 79(3-4): 407-415
Akeno, N.; Miller, A.L.; Ma, X.; Wikenheiser-Brokamp, K.A. 2015: P53 suppresses carcinoma progression by inhibiting mTOR pathway activation. Oncogene 34(5): 589-599
Yang, Z.J.P.; Broz, D.Kenzelmann.; Noderer, W.L.; Ferreira, J.P.; Overton, K.W.; Spencer, S.L.; Meyer, T.; Tapscott, S.J.; Attardi, L.D.; Wang, C.L. 2015: P53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress. Cell Death and Differentiation 22(4): 560-573
Dalton, W.B.; Yu, B.; Yang, V.W. 2010: P53 suppresses structural chromosome instability after mitotic arrest in human cells. Oncogene 29(13): 1929-1940
Horii, T.; Yamamoto, M.; Morita, S.; Kimura, M.; Nagao, Y.; Hatada, I. 2015: P53 suppresses tetraploid development in mice. Scientific Reports 5: 8907
Wiman, K.G. 2013: P53 talks to PARP: the increasing complexity of p53-induced cell death. Cell Death and Differentiation 20(11): 1438-1439
Kawase, T.; Ichikawa, H.; Ohta, T.; Nozaki, N.; Tashiro, F.; Ohki, R.; Taya, Y. 2008: P53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis. Oncogene 27(27): 3797-3810
Gencel-Augusto, J.; Lozano, G. 2020: P53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes and Development 34(17-18): 1128-1146
Sun, H.; Li, L.; Li, W.; Yang, F.; Zhang, Z.; Liu, Z.; Du, W. 2021: P53 transcriptionally regulates SQLE to repress cholesterol synthesis and tumor growth. EMBO reports 22(10): e52537
Schuler, M.; Maurer, U.; Goldstein, J.C.; Breitenbücher, F.; Hoffarth, S.; Waterhouse, N.J.; Green, D.R. 2003: P53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death and Differentiation 10(4): 451-460
Feng, Z.; Jin, S.; Zupnick, A.; Hoh, J.; de Stanchina, E.; Lowe, S.; Prives, C.; Levine, A.J. 2006: P53 tumor suppressor protein regulates the levels of huntingtin gene expression. Oncogene 25(1): 1-7
Bartke, T.; Siegmund, D.; Peters, N.; Reichwein, M.; Henkler, F.; Scheurich, P.; Wajant, H. 2001: P53 upregulates cFLIP, inhibits transcription of NF-kappaB-regulated genes and induces caspase-8-independent cell death in DLD-1 cells. Oncogene 20(5): 571-580
Liu, K.; Li, F.; Sun, Q.; Lin, N.; Han, H.; You, K.; Tian, F.; Mao, Z.; Li, T.; Tong, T.; Geng, M.; Zhao, Y.; Gu, W.; Zhao, W. 2019: P53 β-hydroxybutyrylation attenuates p53 activity. Cell Death and Disease 10(3): 243
Wolff, S.; Erster, S.; Palacios, G.; Moll, U.M. 2008: P53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity. Cell Research 18(7): 733-744
Lin, L.; Ye, Y.; Zakeri, Z. 2006: P53, Apaf-1, caspase-3, and -9 are dispensable for Cdk5 activation during cell death. Cell Death and Differentiation 13(1): 141-150
Brunetti, B.; Bacci, B.; Angeli, C.; Benazzi, C.; Muscatello, L.V. 2021: P53, ER, and Ki67 Expression in Canine Mammary Carcinomas and Correlation with Pathological Variables and Prognosis. Veterinary Pathology 58(2): 325-331
Guzman, G.; Alagiozian-Angelova, V.; Layden-Almer, J.E.; Layden, T.J.; Testa, G.; Benedetti, E.; Kajdacsy-Balla, Aé.; Cotler, S.J. 2005: P53, Ki-67, and serum alpha feto-protein as predictors of hepatocellular carcinoma recurrence in liver transplant patients. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 18(11): 1498-1503
Arakawa, H. 2005: P53, apoptosis and axon-guidance molecules. Cell Death and Differentiation 12(8): 1057-1065
Gal, A.A.; Sheppard, M.N.; Nolen, J.D.L.; Cohen, C. 2004: P53, cellular proliferation, and apoptosis-related factors in thymic neuroendocrine tumors. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 17(1): 33-39
Clarke, A.R.; Howard, L.A.; Harrison, D.J.; Winton, D.J. 1997: P53, mutation frequency and apoptosis in the murine small intestine. Oncogene 14(17): 2015-2018
Travaglino, A.; Raffone, A.; Gencarelli, A.; Neola, D.; Oliviero, D.Alessandro.; Alfano, R.; Campanino, M.Raffaela.; Cariati, F.; Zullo, F.; Mollo, A.; Insabato, L. 2021: P53, p16 and ki67 as immunohistochemical prognostic markers in uterine smooth muscle tumors of uncertain malignant potential (STUMP). Pathology Research and Practice 226: 153592
Lee, S-H.; Lee, S-J.; Chung, J-Y.; Jung, Y-S.; Choi, S-Y.; Hwang, S.H.; Choi, D.; Ha, N-C.; Park, B-J. 2009: P53, secreted by K-Ras-Snail pathway, is endocytosed by K-Ras-mutated cells; implication of target-specific drug delivery and early diagnostic marker. Oncogene 28(19): 2005-2014
Wiebusch, L.; Hagemeier, C. 2010: P53- and p21-dependent premature APC/C-Cdh1 activation in G2 is part of the long-term response to genotoxic stress. Oncogene 29(24): 3477-3489
Lee, P.; Hock, A.K.; Vousden, K.H.; Cheung, E.C. 2015: P53- and p73-independent activation of TIGAR expression in vivo. Cell Death and Disease 6: E1842
Junttila, M.R.; Evan, G.I. 2009: P53--a Jack of all trades but master of none. Nature Reviews. Cancer 9(11): 821-829
Rao, B.; Lain, S.; Thompson, A.M. 2013: P53-Based cyclotherapy: exploiting the 'guardian of the genome' to protect normal cells from cytotoxic therapy. British Journal of Cancer 109(12): 2954-2958
Bond, J.A.; Webley, K.; Wyllie, F.S.; Jones, C.J.; Craig, A.; Hupp, T.; Wynford-Thomas, D. 1999: P53-Dependent growth arrest and altered p53-immunoreactivity following metabolic labelling with 32P ortho-phosphate in human fibroblasts. Oncogene 18(25): 3788-3792
Cuomo, M.Emanuela.; Knebel, A.; Morrice, N.; Paterson, H.; Cohen, P.; Mittnacht, S. 2008: P53-Driven apoptosis limits centrosome amplification and genomic instability downstream of NPM1 phosphorylation. Nature Cell Biology 10(6): 723-730
Wang, Y.; Peng, J.; Mi, X.; Yang, M. 2021: P53-GSDME Elevation: a Path for CDK7 Inhibition to Suppress Breast Cancer Cell Survival. Frontiers in Molecular Biosciences 8: 697457
Daks, A.; Shuvalov, O.; Fedorova, O.; Petukhov, A.; Lezina, L.; Zharova, A.; Baidyuk, E.; Khudiakov, A.; Barlev, N.A. 2021: P53-Independent Effects of Set7/9 Lysine Methyltransferase on Metabolism of Non-Small Cell Lung Cancer Cells. Frontiers in Oncology 11: 706668
Hara, S.; Nakashima, S.; Kiyono, T.; Sawada, M.; Yoshimura, S.; Iwama, T.; Banno, Y.; Shinoda, J.; Sakai, N. 2004: P53-Independent ceramide formation in human glioma cells during gamma-radiation-induced apoptosis. Cell Death and Differentiation 11(8): 853-861
Ma, S.; Kong, D.; Fu, X.; Liu, L.; Liu, Y.; Xue, C.; Tian, Z.; Li, L.; Liu, X. 2021: P53-Induced Autophagy Regulates Chemotherapy and Radiotherapy Resistance in Multidrug Resistance Cancer Cells. Dose-Response:aPublicationofInternationalHormesisSociety 19(4): 15593258211048046
Saleme, B.; Das, S.K.; Zhang, Y.; Boukouris, A.E.; Lorenzana Carrillo, M.A.; Jovel, J.; Wagg, C.S.; Lopaschuk, G.D.; Michelakis, E.D.; Sutendra, G. 2020: P53-Mediated Repression of the PGC1A (PPARG Coactivator 1α) and APLNR (Apelin Receptor) Signaling Pathways Limits Fatty Acid Oxidation Energetics: Implications for Cardio-oncology. Journal of the American Heart Association 9(15): E017247
Hsu, F-F.; Lin, T-Y.; Chen, J-Y.; Shieh, S-Y. 2010: P53-Mediated transactivation of LIMK2b links actin dynamics to cell cycle checkpoint control. Oncogene 29(19): 2864-2876
Lv, T.; Lv, H.; Fei, J.; Xie, Y.; Lian, D.; Hu, J.; Tang, L.; Shi, X.; Wang, J.; Zhang, S.; Li, F.; Jiang, X.; Yi, Y. 2020: P53-R273H promotes cancer cell migration via upregulation of neuraminidase-1. Journal of Cancer 11(23): 6874-6882
Lv, T.; Wu, X.; Sun, L.; Hu, Q.; Wan, Y.; Wang, L.; Zhao, Z.; Tu, X.; Xiao, Z-Xiong.Jim. 2017: P53-R273H upregulates neuropilin-2 to promote cell mobility and tumor metastasis. Cell Death and Disease 8(8): E2995
Brosh, R.; Shalgi, R.; Liran, A.; Landan, G.; Korotayev, K.; Nguyen, G.Huong.; Enerly, E.; Johnsen, H.; Buganim, Y.; Solomon, H.; Goldstein, I.; Madar, S.; Goldfinger, N.; Børresen-Dale, A-Lise.; Ginsberg, D.; Harris, C.C.; Pilpel, Y.; Oren, M.; Rotter, V. 2008: P53-Repressed mi RNAs are involved with E2F in a feed-forward loop promoting proliferation. Molecular Systems Biology 4: 229
Lilling, G.; Elena, N.; Sidi, Y.; Bakhanashvili, M. 2003: P53-associated 3'-->5' exonuclease activity in nuclear and cytoplasmic compartments of cells. Oncogene 22(2): 233-245
Zuchero, J.Bradley.; Coutts, A.S.; Quinlan, M.E.; Thangue, N.B.La.; Mullins, R.Dyche. 2009: P53-cofactor JMY is a multifunctional actin nucleation factor. Nature Cell Biology 11(4): 451-459
Kemp, C.J.; Wheldon, T.; Balmain, A. 1994: P53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nature Genetics 8(1): 66-69
Gorgoulis, V.G.; Pratsinis, H.; Zacharatos, P.; Demoliou, C.; Sigala, F.; Asimacopoulos, P.J.; Papavassiliou, A.G.; Kletsas, D. 2005: P53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Laboratory Investigation; a Journal of Technical Methods and Pathology 85(4): 502-511
Jung, E.Sun.; Choi, H.; Song, H.; Hwang, Y.Jin.; Kim, A.; Ryu, H.; Mook-Jung, I. 2016: P53-dependent SIRT6 expression protects Aβ42-induced DNA damage. Scientific Reports 6: 25628
Sonnemann, J.; Marx, C.; Becker, S.; Wittig, S.; Palani, C.D.; Krämer, O.H.; Beck, J.F. 2014: P53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. British Journal of Cancer 110(3): 656-667
Candéias, S.Michel.; Mancini, Séphane.Jean.Charles.; Touvrey, Cédric.; Borel, E.; Jouvin-Marche, E.; Marche, P.Noël. 2004: P53-dependent and p53-independent pathways for radiation-induced immature thymocyte differentiation. Oncogene 23(10): 1922-1929
Caelles, C.; Helmberg, A.; Karin, M. 1994: P53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370(6486): 220-223
MacLaren, A.P.; Chapman, R.S.; Wyllie, A.H.; Watson, C.J. 2001: P53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cells. Cell Death and Differentiation 8(3): 210-218
Wu, W.; Wei, T.; Li, Z.; Zhu, J. 2021: P53-dependent apoptosis is essential for the antitumor effect of paclitaxel response to DNA damage in papillary thyroid carcinoma. International Journal of Medical Sciences 18(14): 3197-3205
Almog, N.; Goldfinger, N.; Rotter, V. 2000: P53-dependent apoptosis is regulated by a C-terminally alternatively spliced form of murine p53. Oncogene 19(30): 3395-3403
Allan, L.A.; Fried, M. 1999: P53-dependent apoptosis or growth arrest induced by different forms of radiation in U2OS cells: p21WAF1/CIP1 repression in UV induced apoptosis. Oncogene 18(39): 5403-5412
Morgenbesser, S.D.; Williams, B.O.; Jacks, T.; DePinho, R.A. 1994: P53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371(6492): 72-74
Norimura, T.; Nomoto, S.; Katsuki, M.; Gondo, Y.; Kondo, S. 1996: P53-dependent apoptosis suppresses radiation-induced teratogenesis. Nature Medicine 2(5): 577-580
Zhang, J.; Tan, P.; Guo, L.; Gong, J.; Ma, J.; Li, J.; Lee, M.; Fang, S.; Jing, J.; Johnson, G.; Sun, D.; Cao, W-Ming.; Dashwood, R.; Han, L.; Zhou, Y.; Dong, W-Guo.; Huang, Y. 2019: P53-dependent autophagic degradation of TET2 modulates cancer therapeutic resistance. Oncogene 38(11): 1905-1919
Hall, A.R.; Dix, B.R.; O'Carroll, S.J.; Braithwaite, A.W. 1998: P53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nature Medicine 4(9): 1068-1072
Modugno, M.; Tagliabue, E.; Ardini, E.; Berno, V.; Galmozzi, E.; De Bortoli, M.; Castronovo, V.; Ménard, S. 2002: P53-dependent downregulation of metastasis-associated laminin receptor. Oncogene 21(49): 7478-7487
Mitkin, N.A.; Hook, C.D.; Schwartz, A.M.; Biswas, S.; Kochetkov, D.V.; Muratova, A.M.; Afanasyeva, M.A.; Kravchenko, J.E.; Bhattacharyya, A.; Kuprash, D.V. 2015: P53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells. Scientific Reports 5: 9330
Benson, E.K.; Mungamuri, S.K.; Attie, O.; Kracikova, M.; Sachidanandam, R.; Manfredi, J.J.; Aaronson, S.A. 2014: P53-dependent gene repression through p21 is mediated by recruitment of E2F4 repression complexes. Oncogene 33(30): 3959-3969
Chang, H.W.; Lee, M.; Lee, Y.S.; Kim, S.H.; Lee, J.C.; Park, J.J.; Nam, H.Y.; Kim, M.R.; Han, M.W.; Kim, S.W.; Kim, S.Y. 2021: P53-dependent glutamine usage determines susceptibility to oxidative stress in radioresistant head and neck cancer cells. Cellular Signalling 77: 109820
Tung, L.Tze.; Wang, H.; Belle, J.I.; Petrov, J.C.; Langlais, D.; Nijnik, A. 2021: P53-dependent induction of P2X7 on hematopoietic stem and progenitor cells regulates hematopoietic response to genotoxic stress. Cell Death and Disease 12(10): 923
Ohnishi, T.; Wang, X.; Ohnishi, K.; Takahashi, A. 1998: P53-dependent induction of WAF1 by cold shock in human glioblastoma cells. Oncogene 16(11): 1507-1511
Martel, V.; Filhol, O.; Colas, P.; Cochet, C. 2006: P53-dependent inhibition of mammalian cell survival by a genetically selected peptide aptamer that targets the regulatory subunit of protein kinase CK2. Oncogene 25(56): 7343-7353
Blume, C.J.; Hotz-Wagenblatt, A.; Hüllein, J.; Sellner, L.; Jethwa, A.; Stolz, T.; Slabicki, M.; Lee, K.; Sharathchandra, A.; Benner, A.; Dietrich, S.; Oakes, C.C.; Dreger, P.; te Raa, D.; Kater, A.P.; Jauch, A.; Merkel, O.; Oren, M.; Hielscher, T.; Zenz, T. 2015: P53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia 29(10): 2015-2023
Benchimol, S. 2001: P53-dependent pathways of apoptosis. Cell Death and Differentiation 8(11): 1049-1051
Inagaki-Ohara, K.; Yada, S.; Takamura, N.; Reaves, M.; Yu, X.; Liu, E.; Rooney, I.; Nicholas, S.; Castro, A.; Ware, C.F.; Green, D.R.; Lin, T. 2001: P53-dependent radiation-induced crypt intestinal epithelial cells apoptosis is mediated in part through TNF-TNFR1 system. Oncogene 20(7): 812-818
Post, S.M.; Quintás-Cardama, A.; Terzian, T.; Smith, C.; Eischen, C.M.; Lozano, G. 2010: P53-dependent senescence delays Emu-myc-induced B-cell lymphomagenesis. Oncogene 29(9): 1260-1269
Jõers, A.; Jaks, V.; Kase, J.; Maimets, T. 2004: P53-dependent transcription can exhibit both on/off and graded response after genotoxic stress. Oncogene 23(37): 6175-6185
Collavin, L.; Lunardi, A.; Del Sal, G. 2010: P53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death and Differentiation 17(6): 901-911
Tsai, R.Y.L. 2015: P53-guided response to nucleostemin loss in normal versus cancer cells. Cell Death and Disease 6: E2030
Amanullah, A.; Liebermann, D.A.; Hoffman, B. 2000: P53-independent apoptosis associated with c-Myc-mediated block in myeloid cell differentiation. Oncogene 19(26): 2967-2977
Terradillos, O.; Pollicino, T.; Lecoeur, H.; Tripodi, M.; Gougeon, M.L.; Tiollais, P.; Buendia, M.A. 1998: P53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro. Oncogene 17(16): 2115-2123
Malcomson, R.D.; Oren, M.; Wyllie, A.H.; Harrison, D.J. 1995: P53-independent death and p53-induced protection against apoptosis in fibroblasts treated with chemotherapeutic drugs. British Journal of Cancer 72(4): 952-957
Lee, H.J.; Gallardo, M.; Ma, H.; Zhang, X.; Larsson, C.A.; Mejia, A.; Hornbaker, M.J.; Qi, Y.; Su, X.; Pageon, L.R.; Quintas-Cardama, A.; Post, S.M. 2016: P53-independent ibrutinib responses in an Eμ-TCL1 mouse model demonstrates efficacy in high-risk CLL. Blood Cancer Journal 6: E434
Hirose, T.; Sowa, Y.; Takahashi, S.; Saito, S.; Yasuda, C.; Shindo, N.; Furuichi, K.; Sakai, T. 2003: P53-independent induction of Gadd45 by histone deacetylase inhibitor: coordinate regulation by transcription factors Oct-1 and NF-Y. Oncogene 22(49): 7762-7773
Dimitriadi, M.; Poulogiannis, G.; Liu, L.; Bäcklund, L.M.; Pearson, D.M.; Ichimura, K.; Collins, V.P. 2008: P53-independent mechanisms regulate the P2-MDM2 promoter in adult astrocytic tumours. British Journal of Cancer 99(7): 1144-1152
Christoffersen, N.R.; Shalgi, R.; Frankel, L.B.; Leucci, E.; Lees, M.; Klausen, M.; Pilpel, Y.; Nielsen, F.C.; Oren, M.; Lund, A.H. 2010: P53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death and Differentiation 17(2): 236-245
Takano, S.; Wadhwa, R.; Mitsui, Y.; Kaul, S.C. 2001: P53-independent upregulation of p21WAF1 in NIH 3T3 cells malignantly transformed by mot-2. Cell Research 11(1): 55-60
Suzuki, N.; Idogawa, M.; Tange, S.; Ohashi, T.; Sasaki, Y.; Nakase, H.; Tokino, T. 2020: P53-induced ARVCF modulates the splicing landscape and supports the tumor suppressive function of p53. Oncogene 39(10): 2202-2211
Geley, S.; Hartmann, B.L.; Hattmannstorfer, R.; Löffler, M.; Ausserlechner, M.J.; Bernhard, D.; Sgonc, R.; Strasser-Wozak, E.M.; Ebner, M.; Auer, B.; Kofler, R. 1997: P53-induced apoptosis in the human T-ALL cell line CCRF-CEM. Oncogene 15(20): 2429-2437
Cuenin, S.; Tinel, A.; Janssens, S.; Tschopp, J. 2008: P53-induced protein with a death domain (PIDD) isoforms differentially activate nuclear factor-kappaB and caspase-2 in response to genotoxic stress. Oncogene 27(3): 387-396
Marney, C.B.; Anderson, E.S.; Adnan, M.; Peng, K.-L.; Hu, Y.; Weinhold, N.; Schmitt, A.M. 2021: P53-intact cancers escape tumor suppression through loss of long noncoding RNA Dino. Cell Reports 35(13): 109329
Ao, Y.; Rohde, L.H.; Naumovski, L. 2001: P53-interacting protein 53BP2 inhibits clonogenic survival and sensitizes cells to doxorubicin but not paclitaxel-induced apoptosis. Oncogene 20(21): 2720-2725
Linke, S.P.; Harris, M.P.; Neugebauer, S.E.; Clarkin, K.C.; Shepard, H.M.; Maneval, D.C.; Wahl, G.M. 1997: P53-mediated accumulation of hypophosphorylated pRb after the G1 restriction point fails to halt cell cycle progression. Oncogene 15(3): 337-345
Deng, L.; Yao, P.; Li, L.; Ji, F.; Zhao, S.; Xu, C.; Lan, X.; Jiang, P. 2020: P53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival. Nature Communications 11(1): 1755
Meley, D.; Spiller, D.G.; White, M.R.H.; McDowell, H.; Pizer, B.; Sée, V. 2010: P53-mediated delayed NF-κB activity enhances etoposide-induced cell death in medulloblastoma. Cell Death and Disease 1: E41
Li, S.; Wang, M.; Wang, Y.; Guo, Y.; Tao, X.; Wang, X.; Cao, Y.; Tian, S.; Li, Q. 2021: P53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells. Toxicology in Vitro: An International Journal Published in Association with Bibra 73: 105146
Mungamuri, S.Kumar.; Benson, E.Kay.; Wang, S.; Gu, W.; Lee, S.W.; Aaronson, S.A. 2012: P53-mediated heterochromatin reorganization regulates its cell fate decisions. Nature Structural and Molecular Biology 19(5): 478-84 S1
Huang, C-Yang.; Pai, P-Ying.; Kuo, C-Hua.; Ho, T-Jung.; Lin, J-Ying.; Lin, D-Yu.; Tsai, F-Jen.; Padma, V.Vijaya.; Kuo, W-Wen.; Huang, C-Yang. 2017: P53-mediated miR-18 repression activates HSF2 for IGF-IIR-dependent myocyte hypertrophy in hypertension-induced heart failure. Cell Death and Disease 8(8): E2990
Kim, Y.Yeon.; Um, J-Hyun.; Shin, D.Jin.; Jeong, D.Jin.; Hong, Y.Bin.; Yun, J. 2021: P53-mediated regulation of mitochondrial dynamics plays a pivotal role in the senescence of various normal cells as well as cancer cells. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 35(2): e21319
López, I.; Tournillon, A-Sophie.; Prado Martins, R.; Karakostis, K.; Malbert-Colas, L.; Nylander, K.; Fåhraeus, R. 2017: P53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death and Differentiation 24(10): 1717-1729
Huang, J.; Logsdon, N.; Schmieg, F.I.; Simmons, D.T. 1998: P53-mediated transcription induces resistance of DNA to UV inactivation. Oncogene 17(4): 401-411
Croft, D.R.; Crighton, D.; Samuel, M.S.; Lourenco, F.C.; Munro, J.; Wood, J.; Bensaad, K.; Vousden, K.H.; Sansom, O.J.; Ryan, K.M.; Olson, M.F. 2011: P53-mediated transcriptional regulation and activation of the actin cytoskeleton regulatory RhoC to LIMK2 signaling pathway promotes cell survival. Cell Research 21(4): 666-682
Ruiz-Ruiz, M.C.; López-Rivas, A. 1999: P53-mediated up-regulation of CD95 is not involved in genotoxic drug-induced apoptosis of human breast tumor cells. Cell Death and Differentiation 6(3): 271-280
Testoni, B.; Schinzari, V.; Guerrieri, F.; Gerbal-Chaloin, S.; Blandino, G.; Levrero, M. 2011: P53-paralog DNp73 oncogene is repressed by IFNα/STAT2 through the recruitment of the Ezh2 polycomb group transcriptional repressor. Oncogene 30(23): 2670-2678
Litwak, S.A.; Loh, K.; Stanley, W.J.; Pappas, E.G.; Wali, J.A.; Selck, C.; Strasser, A.; Thomas, H.E.; Gurzov, E.N. 2016: P53-upregulated-modulator-of-apoptosis (PUMA) deficiency affects food intake but does not impact on body weight or glucose homeostasis in diet-induced obesity. Scientific Reports 6: 23802
Chang, H.Won.; Kim, M.Ra.; Lee, H.Ju.; Lee, H.Min.; Kim, G.Chul.; Lee, Y.Sun.; Nam, H.Yun.; Lee, M.; Jang, H.Jin.; Lee, K.Eun.; Lee, J.Cheol.; Byun, Y.; Kim, S.Who.; Kim, S.Yoon. 2019: P53/BNIP3-dependent mitophagy limits glycolytic shift in radioresistant cancer. Oncogene 38(19): 3729-3742
Sano, H.; Futamura, M.; Gaowa, S.; Kamino, H.; Nakamura, Y.; Yamaguchi, K.; Tanaka, Y.; Yasufuku, I.; Nakakami, A.; Arakawa, H.; Yoshida, K. 2020: P53/Mieap-regulated mitochondrial quality control plays an important role as a tumor suppressor in gastric and esophageal cancers. Biochemical and Biophysical Research Communications 529(3): 582-589
Wang, W.; Liu, H.; Dai, X.; Fang, S.; Wang, X.; Zhang, Y.; Yao, H.; Zhang, X.; Chao, J. 2015: P53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis. Scientific Reports 5: 16900
Gonin, S.; Diaz-Latoud, C.; Richard, M.J.; Ursini, M.V.; Imbo, A.; Manero, F.; Arrigo, A.P. 1999: P53/T-antigen complex disruption in T-antigen transformed NIH3T3 fibroblasts exposed to oxidative stress: correlation with the appearance of a Fas/APO-1/CD95 dependent, caspase independent, necrotic pathway. Oncogene 18(56): 8011-8023
Ma, Z.; Li, L.; Livingston, M.J.; Zhang, D.; Mi, Q.; Zhang, M.; Ding, H.-F.; Huo, Y.; Mei, C.; Dong, Z. 2020: P53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. Journal of Clinical Investigation 130(9): 5011-5026
Murray-Zmijewski, F.; Lane, D.P.; Bourdon, J-C. 2006: P53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death and Differentiation 13(6): 962-972
Wu, Q.; Zhang, K.-J.; Jiang, S.-M.; Fu, L.; Shi, Y.; Tan, R.-B.; Cui, J.; Zhou, Y. 2020: P53: a Key Protein that Regulates Pulmonary Fibrosis. Oxidative Medicine and Cellular Longevity 2020: 6635794
Levine, B.; Abrams, J. 2008: P53: The Janus of autophagy?. Nature Cell Biology 10(6): 637-639
Wrighton, K.H. 2016: P53: Understanding the actions of 53BP1. Nature Reviews. Molecular Cell Biology 17(10): 608
Kastan, M.B.; Berkovich, E. 2007: P53: a two-faced cancer gene. Nature Cell Biology 9(5): 489-491
Lloyd, A.C. 2000: P53: only ARF the story. Nature Cell Biology 2(3): E48-E50
Sengupta, S.; Harris, C.C. 2005: P53: traffic cop at the crossroads of DNA repair and recombination. Nature Reviews. Molecular Cell Biology 6(1): 44-55
Amelio, I.; Knight, R.A.; Lisitsa, A.; Melino, G.; Antonov, A.V. 2016: P53MutaGene: an online tool to estimate the effect of p53 mutational status on gene regulation in cancer. Cell Death and Disease 7: E2148
Tanikawa, C.; Matsuda, K.; Fukuda, S.; Nakamura, Y.; Arakawa, H. 2003: P53RDL1 regulates p53-dependent apoptosis. Nature Cell Biology 5(3): 216-223
Ng, C-Ching.; Arakawa, H.; Fukuda, S.; Kondoh, H.; Nakamura, Y. 2003: P53RFP, a p53-inducible RING-finger protein, regulates the stability of p21WAF1. Oncogene 22(28): 4449-4458
Jamieson, A.; Thompson, E.F.; Huvila, J.; Gilks, C.B.; McAlpine, J.N. 2021: P53abn Endometrial Cancer: understanding the most aggressive endometrial cancers in the era of molecular classification. International Journal of Gynecological Cancer: Official Journal of the International Gynecological Cancer Society 31(6): 907-913
Kameoka, S.; Duque, P.; Konarska, M.M. 2004: P54(nrb) associates with the 5' splice site within large transcription/splicing complexes. EMBO Journal 23(8): 1782-1791
Zhu, Z.; Zhao, X.; Zhao, L.; Yang, H.; Liu, L.; Li, J.; Wu, J.; Yang, F.; Huang, G.; Liu, J. 2016: P54(nrb)/NONO regulates lipid metabolism and breast cancer growth through SREBP-1A. Oncogene 35(11): 1399-1410
Furutachi, S.; Matsumoto, A.; Nakayama, K.I.; Gotoh, Y. 2013: P57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO Journal 32(7): 970-981
Kavanagh, E.; Vlachos, P.; Emourgeon, V.; Rodhe, J.; Joseph, B. 2012: P57(KIP2) control of actin cytoskeleton dynamics is responsible for its mitochondrial pro-apoptotic effect. Cell Death and Disease 3: E311
Potikha, T.; Kassem, S.; Haber, E.P.; Ariel, I.; Glaser, B. 2005: P57Kip2 (cdkn1c): sequence, splice variants and unique temporal and spatial expression pattern in the rat pancreas. Laboratory Investigation; a Journal of Technical Methods and Pathology 85(3): 364-375
Joseph, B.; Andersson, E.R.; Vlachos, P.; Södersten, E.; Liu, L.; Teixeira, A.I.; Hermanson, O. 2009: P57Kip2 is a repressor of Mash1 activity and neuronal differentiation in neural stem cells. Cell Death and Differentiation 16(9): 1256-1265
Jia, H.; Cong, Q.; Chua, J.F.L.; Liu, H.; Xia, X.; Zhang, X.; Lin, J.; Habib, S.L.; Ao, J.; Zuo, Q.; Fu, C.; Li, B. 2015: P57Kip2 is an unrecognized DNA damage response effector molecule that functions in tumor suppression and chemoresistance. Oncogene 34(27): 3568-3581
Monti, B. 2021: P57kip2 nuclear export as a marker of oligodendrocytes differentiation: Towards an innovative phenotyping screening for the identification of myelin repair drugs. Ebiomedicine 66: 103298
Boriushkin, E.; Wang, J.J.; Li, J.; Bhatta, M.; Zhang, S.X. 2016: P58(IPK) suppresses NLRP3 inflammasome activation and IL-1β production via inhibition of PKR in macrophages. Scientific Reports 6: 25013
Aouacheria, A.; Ory, Séphane.; Schmitt, J-Robert.; Rigal, D.; Jurdic, P.; Gillet, G. 2002: P60(v-src) and serum control cell shape and apoptosis via distinct pathways in quail neuroretina cells. Oncogene 21(8): 1171-1186
Korulu, S.; Yildiz, A. 2020: P60-katanin: a novel interacting partner for p53. Molecular Biology Reports 47(6): 4295-4301
Leong, I. 2018: P62 - a new metabolic tumour suppressor. Nature Reviews. Endocrinology 14(6): 324
Caccamo, A.; Ferreira, E.; Branca, C.; Oddo, S. 2017: P62 improves AD-like pathology by increasing autophagy. Molecular Psychiatry 22(6): 865-873
Kobayashi, T.; Ishida, M.; Miki, H.; Matsumi, Y.; Fukui, T.; Hamada, M.; Tsuta, K.; Sekimoto, M. 2021: P62 is a useful predictive marker for tumour regression after chemoradiation therapy in patients with advanced rectal cancer: an immunohistochemical study. Colorectal Disease: the Official Journal of the Association of Coloproctology of Great Britain and Ireland 23(5): 1083-1090
Thompson, H.Garrett.R.; Harris, J.W.; Wold, B.J.; Lin, F.; Brody, J.P. 2003: P62 overexpression in breast tumors and regulation by prostate-derived Ets factor in breast cancer cells. Oncogene 22(15): 2322-2333
Foster, A.D.; Flynn, L.L.; Cluning, C.; Cheng, F.; Davidson, J.M.; Lee, A.; Polain, N.; Mejzini, R.; Farrawell, N.; Yerbury, J.J.; Layfield, R.; Akkari, P.A.; Rea, S.L. 2021: P62 overexpression induces TDP-43 cytoplasmic mislocalisation, aggregation and cleavage and neuronal death. Scientific Reports 11(1): 11474
Liu, S.; Ye, F.; Li, D.; He, C.; He, H.; Zhang, J. 2020: P62 overexpression promotes neoplastic stromal cell proliferation and is associated with the recurrence of giant cell tumor of bone. Oncology Letters 20(4): 86
Rusten, T.Erik.; Stenmark, H. 2010: P62, an autophagy hero or culprit?. Nature Cell Biology 12(3): 207-209
Eskelinen, E-Liisa.; Kageyama, S.; Komatsu, M. 2021: P62/SQSTM1 droplets initiate autophagosome biogenesis and oxidative stress control. Molecular and Cellular Oncology 8(2): 1890990
Xu, L-Z.; Li, S-S.; Zhou, W.; Kang, Z-J.; Zhang, Q-X.; Kamran, M.; Xu, J.; Liang, D-P.; Wang, C-L.; Hou, Z-J.; Wan, X-B.; Wang, H-J.; Lam, E.W-F.; Zhao, Z-W.; Liu, Q. 2017: P62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA. Oncogene 36(3): 304-317
Trocoli, A.; Bensadoun, P.; Richard, E.; Labrunie, G.; Merhi, F.; Schläfli, A.M.; Brigger, D.; Souquere, S.; Pierron, G.; Pasquet, J-M.; Soubeyran, P.; Reiffers, J.; Ségal-Bendirdjian, E.; Tschan, M.P.; Djavaheri-Mergny, M. 2014: P62/SQSTM1 upregulation constitutes a survival mechanism that occurs during granulocytic differentiation of acute myeloid leukemia cells. Cell Death and Differentiation 21(12): 1852-1861
Lee, S.Hyun.; Cho, W.Jin.; Najy, A.J.; Saliganan, A-Dexter.; Pham, T.; Rakowski, J.; Loughery, B.; Ji, C.Hoon.; Sakr, W.; Kim, S.; Kato, I.; Chung, W.Kuu.; Kim, H.E.; Kwon, Y.Tae.; Kim, H-Reh.C. 2021: P62/SQSTM1-induced caspase-8 aggresomes are essential for ionizing radiation-mediated apoptosis. Cell Death and Disease 12(11): 997
Cha-Molstad, H.; Yu, J.Eun.; Feng, Z.; Lee, S.Hyun.; Kim, J.Gi.; Yang, P.; Han, B.; Sung, K.Woon.; Yoo, Y.Dong.; Hwang, J.; McGuire, T.; Shim, S.Mi.; Song, H.Dong.; Ganipisetti, S.; Wang, N.; Jang, J.Min.; Lee, M.Jae.; Kim, S.Jun.; Lee, K.Ho.; Hong, J.Tae.; Ciechanover, A.; Mook-Jung, I.; Kim, K.Pyo.; Xie, X-Qun.; Kwon, Y.Tae.; Kim, B.Yeon. 2017: P62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nature Communications 8(1): 102
Trelford, C.B.; Ng, E.; Campbell, C.I.; Di Guglielmo, G.M. 2021: P62/Sequestosome 1 regulates transforming growth factor beta signaling and epithelial to mesenchymal transition in A549 cells. Cellular Signalling 85: 110040
Huang, H.; Tan, K.S.; Zhou, S.; Yuan, T.; Liu, J.; Ong, H.H.; Chen, Q.; Gao, J.; Xu, M.; Zhu, Z.; Qiu, Q.; Wang, D.Y. 2020: P63+Krt5+ basal cells are increased in the squamous metaplastic epithelium of patients with radiation-induced chronic Rhinosinusitis. Radiation Oncology 15(1): 222
Emanuel, P.; Wang, B.; Wu, M.; Burstein, D.E. 2005: P63 Immunohistochemistry in the distinction of adenoid cystic carcinoma from basaloid squamous cell carcinoma. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 18(5): 645-650
Min, S.; Oyelakin, A.; Gluck, C.; Bard, J.E.; Song, E.-A.C.; Smalley, K.; Che, M.; Flores, E.; Sinha, S.; Romano, R.-A. 2020: P63 and its Target Follistatin Maintain Salivary Gland Stem/Progenitor Cell Function through TGF-β/Activin Signaling. Iscience 23(9): 101524
Woodstock, D.L.; Sammons, M.A.; Fischer, M. 2021: P63 and p53: Collaborative Partners or Dueling Rivals?. Frontiers in Cell and Developmental Biology 9: 701986
Flores, E.R.; Tsai, K.Y.; Crowley, D.; Sengupta, S.; Yang, A.; McKeon, F.; Jacks, T. 2002: P63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416(6880): 560-564
Fatt, M.P.; Cancino, G.I.; Miller, F.D.; Kaplan, D.R. 2014: P63 and p73 coordinate p53 function to determine the balance between survival, cell death, and senescence in adult neural precursor cells. Cell Death and Differentiation 21(10): 1546-1559
Deyoung, M.P.; Ellisen, L.W. 2007: P63 and p73 in human cancer: defining the network. Oncogene 26(36): 5169-5183
Giacobbe, A.; Compagnone, M.; Bongiorno-Borbone, L.; Antonov, A.; Markert, E.K.; Zhou, J.H.; Annicchiarico-Petruzzelli, M.; Melino, G.; Peschiaroli, A. 2016: P63 controls cell migration and invasion by transcriptional regulation of MTSS1. Oncogene 35(12): 1602-1608
Sheikh, H.A.; Fuhrer, K.; Cieply, K.; Yousem, S. 2004: P63 expression in assessment of bronchioloalveolar proliferations of the lung. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 17(9): 1134-1140
Steurer, S.; Riemann, C.; Büscheck, F.; Luebke, A.M.; Kluth, M.; Hube-Magg, C.; Hinsch, A.; Höflmayer, D.; Weidemann, S.ör.; Fraune, C.; Möller, K.; Menz, A.; Fisch, M.; Rink, M.; Bernreuther, C.; Lebok, P.; Clauditz, T.S.; Sauter, G.; Uhlig, R.; Wilczak, W.; Dum, D.; Simon, R.; Minner, S.; Burandt, E.; Krech, R.; Krech, T.; Marx, A.H. 2021: P63 expression in human tumors and normal tissues: a tissue microarray study on 10,200 tumors. Biomarker Research 9(1): 7
Hunt, J.L.; LiVolsi, V.A.; Barnes, E.Leon. 2004: P63 expression in sclerosing mucoepidermoid carcinomas with eosinophilia arising in the thyroid. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 17(5): 526-529
Koster, M.I. 2010: P63 in skin development and ectodermal dysplasias. Journal of Investigative Dermatology 130(10): 2352-2358
Asatsuma-Okumura, T.; Ando, H.; De Simone, M.; Yamamoto, J.; Sato, T.; Shimizu, N.; Asakawa, K.; Yamaguchi, Y.; Ito, T.; Guerrini, L.; Handa, H. 2019: P63 is a cereblon substrate involved in thalidomide teratogenicity. Nature Chemical Biology 15(11): 1077-1084
Mills, A.A.; Zheng, B.; Wang, X.J.; Vogel, H.; Roop, D.R.; Bradley, A. 1999: P63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398(6729): 708-713
Yallowitz, A.R.; Alexandrova, E.M.; Talos, F.; Xu, S.; Marchenko, N.D.; Moll, U.M. 2014: P63 is a prosurvival factor in the adult mammary gland during post-lactational involution, affecting PI-MECs and ErbB2 tumorigenesis. Cell Death and Differentiation 21(4): 645-654
Melino, G. 2011: P63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death and Differentiation 18(9): 1487-1499
Yang, A.; Schweitzer, R.; Sun, D.; Kaghad, M.; Walker, N.; Bronson, R.T.; Tabin, C.; Sharpe, A.; Caput, D.; Crum, C.; McKeon, F. 1999: P63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398(6729): 714-718
Awais, R.; Spiller, D.G.; White, M.R.H.; Paraoan, L. 2016: P63 is required beside p53 for PERP-mediated apoptosis in uveal melanoma. British Journal of Cancer 115(8): 983-992
Suh, E-Kyung.; Yang, A.; Kettenbach, A.; Bamberger, C.; Michaelis, A.H.; Zhu, Z.; Elvin, J.A.; Bronson, R.T.; Crum, C.P.; McKeon, F. 2006: P63 protects the female germ line during meiotic arrest. Nature 444(7119): 624-628
Borrelli, S.; Candi, E.; Alotto, D.; Castagnoli, C.; Melino, G.; Viganò, M.A.; Mantovani, R. 2009: P63 regulates the caspase-8-FLIP apoptotic pathway in epidermis. Cell Death and Differentiation 16(2): 253-263
Su, X.; Chakravarti, D.; Flores, E.R. 2013: P63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nature Reviews. Cancer 13(2): 136-143
Gebel, J.; Tuppi, M.; Chaikuad, A.; Hötte, K.; Schröder, M.; Schulz, L.; Löhr, F.; Gutfreund, N.; Finke, F.; Henrich, E.; Mezhyrova, J.; Lehnert, R.; Pampaloni, F.; Hummer, G.; Stelzer, E.H.K.; Knapp, S.; Dötsch, V. 2020: P63 uses a switch-like mechanism to set the threshold for induction of apoptosis. Nature Chemical Biology 16(10): 1078-1086
Zuo, W.; Zhang, T.; Wu, D.Zheng'An.; Guan, S.Ping.; Liew, A-Ann.; Yamamoto, Y.; Wang, X.; Lim, S.Joo.; Vincent, M.; Lessard, M.; Crum, C.P.; Xian, W.; McKeon, F. 2015: P63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature 517(7536): 616-620
Okuyama, T.; Kurata, S.; Tomimori, Y.; Fukunishi, N.; Sato, S.; Osada, M.; Tsukinoki, K.; Jin, H-F.; Yamashita, A.; Ito, M.; Kobayashi, S.; Hata, R-I.; Ikawa, Y.; Katoh, I. 2008: P63(TP63) elicits strong trans-activation of the MFG-E8/lactadherin/BA46 gene through interactions between the TA and DeltaN isoforms. Oncogene 27(3): 308-317
Vanbokhoven, H.; Melino, G.; Candi, E.; Declercq, W. 2011: P63, a story of mice and men. Journal of Investigative Dermatology 131(6): 1196-1207
Lodillinsky, C.; Infante, E.; Guichard, A.; Chaligné, R.; Fuhrmann, L.; Cyrta, J.; Irondelle, M.; Lagoutte, E.; Vacher, S.; Bonsang-Kitzis, H.; Glukhova, M.; Reyal, F.; Bièche, I.; Vincent-Salomon, A.; Chavrier, P. 2016: P63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene 35(3): 344-357
Blanpain, Cédric.; Fuchs, E. 2007: P63: revving up epithelial stem-cell potential. Nature Cell Biology 9(7): 731-733
Dohn, M.; Zhang, S.; Chen, X. 2001: P63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20(25): 3193-3205
De Beule, T.; Boulanger, T.; Heye, S.; van Rooij, W.J.; van Zwam, W.H.; Stockx, L. 2021: P64 flow diverter: Results in 108 patients from a single center. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology Surgical Procedures and Related Neurosciences 27(1): 51-59
Grassilli, E.; Cerrito, M.G.; Bonomo, S.; Giovannoni, R.; Conconi, D.; Lavitrano, M. 2021: P65BTK Is a Novel Biomarker and Therapeutic Target in Solid Tumors. Frontiers in Cell and Developmental Biology 9: 690365
Debnath, J. 2010: P66(Shc) and Ras: controlling anoikis from the inside-out. Oncogene 29(41): 5556-5558
Haga, S.; Morita, N.; Irani, K.; Fujiyoshi, M.; Ogino, T.; Ozawa, T.; Ozaki, M. 2010: P66(Shc) has a pivotal function in impaired liver regeneration in aged mice by a redox-dependent mechanism. Laboratory Investigation; a Journal of Technical Methods and Pathology 90(12): 1718-1726
Ma, Z.; Liu, Z.; Wu, R-F.; Terada, L.S. 2010: P66(Shc) restrains Ras hyperactivation and suppresses metastatic behavior. Oncogene 29(41): 5559-5567
Pellegrini, M.; Finetti, F.; Petronilli, V.; Ulivieri, C.; Giusti, F.; Lupetti, P.; Giorgio, M.; Pelicci, P.G.; Bernardi, P.; Baldari, C.T. 2007: P66SHC promotes T cell apoptosis by inducing mitochondrial dysfunction and impaired Ca2+ homeostasis. Cell Death and Differentiation 14(2): 338-347
Minami, Y.; Sonoda, N.; Hayashida, E.; Makimura, H.; Ide, M.; Ikeda, N.; Ohgidani, M.; Kato, T.A.; Seki, Y.; Maeda, Y.; Kanba, S.; Takayanagi, R.; Ogawa, Y.; Inoguchi, T. 2018: P66Shc Signaling Mediates Diabetes-Related Cognitive Decline. Scientific Reports 8(1): 3213
Lone, A.; Harris, R.A.; Singh, O.; Betts, D.H.; Cumming, R.C. 2018: P66Shc activation promotes increased oxidative phosphorylation and renders CNS cells more vulnerable to amyloid beta toxicity. Scientific Reports 8(1): 17081
Patrussi, L.; Capitani, N.; Cattaneo, F.; Manganaro, N.; Gamberucci, A.; Frezzato, F.; Martini, V.; Visentin, A.; Pelicci, P.Giuseppe.; D'Elios, M.M.; Trentin, L.; Semenzato, G.; Baldari, C.T. 2018: P66Shc deficiency enhances CXCR4 and CCR7 recycling in CLL B cells by facilitating their dephosphorylation-dependent release from β-arrestin at early endosomes. Oncogene 37(11): 1534-1550
Miller, B.; Palygin, O.; El-Meanawy, A.; Mattson, D.L.; Geurts, A.M.; Staruschenko, A.; Sorokin, A. 2021: P66Shc-mediated hydrogen peroxide production impairs nephrogenesis causing reduction of number of glomeruli. Life Sciences 279: 119661
Xu, X.; Zhu, X.; Ma, M.; Han, Y.; Hu, C.; Yuan, S.; Yang, Y.; Xiao, L.; Liu, F.; Kanwar, Y.S.; Sun, L. 2016: P66Shc: A novel biomarker of tubular oxidative injury in patients with diabetic nephropathy. Scientific Reports 6: 29302
Koeller, C.M.; Smith, T.K.; Gulick, A.M.; Bangs, J.D. 2021: P67: a cryptic lysosomal hydrolase in Trypanosoma brucei?. Parasitology 148(10): 1271-1276
Ip, C.K.M.; Cheung, A.N.Y.; Ngan, H.Y.S.; Wong, A.S.T. 2011: P70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells. Oncogene 30(21): 2420-2432
Li, M.; Chen, H.; Sun, T.; Ma, Z.; Chen, X.; Wu, D.; Huang, W.; Wang, X. 2020: P70S6K Promotes Acquired Resistance of Erlotinib Through Induction of Epithelial-Mesenchymal Transition in Non-Small Cell Lung Carcinoma. Oncotargets and Therapy 13: 5257-5270
Lane, H.A.; Fernandez, A.; Lamb, N.J.; Thomas, G. 1993: P70s6k function is essential for G1 progression. Nature 363(6425): 170-172
Topin-Ruiz, S.èn.; Mellinger, A.él.; Lepeltier, E.; Bourreau, C.; Fouillet, J.; Riou, J.ér.ém.; Jaouen, G.ér.; Martin, L.; Passirani, C.; Clere, N. 2021: P722 ferrocifen loaded lipid nanocapsules improve survival of murine xenografted-melanoma via a potentiation of apoptosis and an activation of CD8+ T lymphocytes. International Journal of Pharmaceutics 593: 120111
Uboveja, A.; Satija, Y.Kumar.; Siraj, F.; Sharma, I.; Saluja, D. 2020: P73 - NAV3 axis plays a critical role in suppression of colon cancer metastasis. Oncogenesis 9(2): 12
Seeliger, M.A.; Moll, U.M. 2013: P73 - constitutively open for business. Cell Death and Differentiation 20(8): 972-973
Vikhanskaya, F.; Bani, M.R.; Borsotti, P.; Ghilardi, C.; Ceruti, R.; Ghisleni, G.; Marabese, M.; Giavazzi, R.; Broggini, M.; Taraboletti, G. 2001: P73 Overexpression increases VEGF and reduces thrombospondin-1 production: implications for tumor angiogenesis. Oncogene 20(50): 7293-7300
Maeso-Alonso, L.; López-Ferreras, L.; Marques, M.M.; Marin, M.C. 2021: P73 as a Tissue Architect. Frontiers in Cell and Developmental Biology 9: 716957
Ichimiya, S.; Nimura, Y.; Kageyama, H.; Takada, N.; Sunahara, M.; Shishikura, T.; Nakamura, Y.; Sakiyama, S.; Seki, N.; Ohira, M.; Kaneko, Y.; McKeon, F.; Caput, D.; Nakagawara, A. 1999: P73 at chromosome 1p36.3 is lost in advanced stage neuroblastoma but its mutation is infrequent. Oncogene 18(4): 1061-1066
Das, S.; Nama, S.; Antony, S.; Somasundaram, K. 2005: P73 beta-expressing recombinant adenovirus: a potential anticancer agent. Cancer Gene Therapy 12(4): 417-426
Willis, A.C.; Pipes, T.; Zhu, J.; Chen, X. 2003: P73 can suppress the proliferation of cells that express mutant p53. Oncogene 22(35): 5481-5495
Zhu, J.; Nozell, S.; Wang, J.; Jiang, J.; Zhou, W.; Chen, X. 2001: P73 cooperates with DNA damage agents to induce apoptosis in MCF7 cells in a p53-dependent manner. Oncogene 20(30): 4050-4057
Fernandez-Garcia, B.; Vaqué, J.P.; Herreros-Villanueva, M.; Marques-Garcia, F.; Castrillo, F.; Fernandez-Medarde, A.; León, J.; Marín, M.C. 2007: P73 cooperates with Ras in the activation of MAP kinase signaling cascade. Cell Death and Differentiation 14(2): 254-265
Gong, H.; Zhang, Y.; Jiang, K.; Ye, S.; Chen, S.; Zhang, Q.; Peng, J.; Chen, J. 2018: P73 coordinates with Δ133p53 to promote DNA double-strand break repair. Cell Death and Differentiation 25(6): 1063-1079
Gonzalez-Cano, L.; Herreros-Villanueva, M.; Fernandez-Alonso, R.; Ayuso-Sacido, A.; Meyer, G.; Garcia-Verdugo, J.M.; Silva, A.; Marques, M.M.; Marin, M.C. 2010: P73 deficiency results in impaired self renewal and premature neuronal differentiation of mouse neural progenitors independently of p53. Cell Death and Disease 1: E109
Long, J.S.; Schoonen, P.M.; Graczyk, D.; O'Prey, J.; Ryan, K.M. 2015: P73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene 34(40): 5152-5162
Johnson, J.; Lagowski, J.; Lawson, S.; Liu, Y.; Kulesz-Martin, M. 2008: P73 expression modulates p63 and Mdm2 protein presence in complex with p53 family-specific DNA target sequence in squamous cell carcinogenesis. Oncogene 27(19): 2780-2787
Talos, F.; Abraham, A.; Vaseva, A.V.; Holembowski, L.; Tsirka, S.E.; Scheel, A.; Bode, D.; Dobbelstein, M.; Brück, W.; Moll, U.M. 2010: P73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis. Cell Death and Differentiation 17(12): 1816-1829
Flores, E.R. 2011: P73 is critical for the persistence of memory. Cell Death and Differentiation 18(3): 381-382
Alexandrova, E.M.; Talos, F.; Moll, U.M. 2013: P73 is dispensable for commitment to neural stem cell fate, but is essential for neural stem cell maintenance and for blocking premature differentiation. Cell Death and Differentiation 20(2): 368
Kommagani, R.; Whitlatch, A.; Leonard, M.K.; Kadakia, M.P. 2010: P73 is essential for vitamin D-mediated osteoblastic differentiation. Cell Death and Differentiation 17(3): 398-407
Yuan, Z.M.; Shioya, H.; Ishiko, T.; Sun, X.; Gu, J.; Huang, Y.Y.; Lu, H.; Kharbanda, S.; Weichselbaum, R.; Kufe, D. 1999: P73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 399(6738): 814-817
Fernandez-Alonso, R.; Martin-Lopez, M.; Gonzalez-Cano, L.; Garcia, S.; Castrillo, F.; Diez-Prieto, I.; Fernandez-Corona, A.; Lorenzo-Marcos, M.E.; Li, X.; Claesson-Welsh, L.; Marques, M.M.; Marin, M.C. 2015: P73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling. Cell Death and Differentiation 22(8): 1287-1299
Chen, X.; Zheng, Y.; Zhu, J.; Jiang, J.; Wang, J. 2001: P73 is transcriptionally regulated by DNA damage, p53, and p73. Oncogene 20(6): 769-774
Fets, L.; Anastasiou, D. 2013: P73 keeps metabolic control in the family. Nature Cell Biology 15(8): 891-893
Stirewalt, D.L.; Clurman, B.; Appelbaum, F.R.; Willman, C.L.; Radich, J.P. 1999: P73 mutations and expression in adult de novo acute myelogenous leukemia. Leukemia 13(7): 985-990
Beitzinger, M.; Hofmann, L.; Oswald, C.; Beinoraviciute-Kellner, R.; Sauer, M.; Griesmann, H.; Bretz, A.Catherine.; Burek, C.; Rosenwald, A.; Stiewe, T. 2008: P73 poses a barrier to malignant transformation by limiting anchorage-independent growth. EMBO Journal 27(5): 792-803
He, Z.; Liu, H.; Agostini, M.; Yousefi, S.; Perren, A.; Tschan, M.P.; Mak, T.W.; Melino, G.; Simon, H.U. 2013: P73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death and Differentiation 20(10): 1415-1424
Fuertes-Alvarez, S.; Maeso-Alonso, L.; Villoch-Fernandez, J.; Wildung, M.; Martin-Lopez, M.; Marshall, C.; Villena-Cortes, A.J.; Diez-Prieto, I.; Pietenpol, J.A.; Tissir, F.; Lizé, M.; Marques, M.M.; Marin, M.C. 2018: P73 regulates ependymal planar cell polarity by modulating actin and microtubule cytoskeleton. Cell Death and Disease 9(12): 1183
Amelio, I.; Markert, E.K.; Rufini, A.; Antonov, A.V.; Sayan, B.S.; Tucci, P.; Agostini, M.; Mineo, T.C.; Levine, A.J.; Melino, G. 2014: P73 regulates serine biosynthesis in cancer. Oncogene 33(42): 5039-5046
Vikhanskaya, F.; Toh, W.Hong.; Dulloo, I.; Wu, Q.; Boominathan, L.; Ng, H.Hui.; Vousden, K.H.; Sabapathy, K. 2007: P73 supports cellular growth through c-Jun-dependent AP-1 transactivation. Nature Cell Biology 9(6): 698-705
Alarcon-Vargas, D.; Fuchs, S.Y.; Deb, S.; Ronai, Z. 2000: P73 transcriptional activity increases upon cooperation between its spliced forms. Oncogene 19(6): 831-835
Terrinoni, A.; Ranalli, M.; Cadot, B.; Leta, A.; Bagetta, G.; Vousden, K.H.; Melino, G. 2004: P73-alpha is capable of inducing scotin and ER stress. Oncogene 23(20): 3721-3725
Yang, A.; Walker, N.; Bronson, R.; Kaghad, M.; Oosterwegel, M.; Bonnin, J.; Vagner, C.; Bonnet, H.; Dikkes, P.; Sharpe, A.; McKeon, F.; Caput, D. 2000: P73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404(6773): 99-103
Melino, G.; De Laurenzi, V.; Vousden, K.H. 2002: P73: Friend or foe in tumorigenesis. Nature Reviews. Cancer 2(8): 605-615
Irwin, M.S.; Miller, F.D. 2004: P73: regulator in cancer and neural development. Cell Death and Differentiation 11 Suppl. 1: S17-S22
Miro-Mur, F.; Meiller, A.; Haddada, H.; May, E. 2003: P73alpha expression induces both accumulation and activation of wt-p53 independent of the p73alpha transcriptional activity. Oncogene 22(35): 5451-5456
Platón-Corchado, Mía.; Barcelona, P.F.; Jmaeff, S.; Marchena, M.; Hernández-Pinto, A.M.; Hernández-Sánchez, C.; Saragovi, H.Uri.; de la Rosa, E.J. 2017: P75 NTR antagonists attenuate photoreceptor cell loss in murine models of retinitis pigmentosa. Cell Death and Disease 8(7): E2922
Vaidyanathan, S.; Krishnan, K.R.; Mansour, P.; Soni, B.M.; McDicken, I. 1998: P75 nerve growth factor receptor in the vesical urothelium of patients with neuropathic bladder: an immunohistochemical study. Spinal Cord 36(8): 541-547
Truzzi, F.; Marconi, A.; Atzei, P.; Panza, M.C.; Lotti, R.; Dallaglio, K.; Tiberio, R.; Palazzo, E.; Vaschieri, C.; Pincelli, C. 2011: P75 neurotrophin receptor mediates apoptosis in transit-amplifying cells and its overexpression restores cell death in psoriatic keratinocytes. Cell Death and Differentiation 18(6): 948-958
Makkerh, J.P.S.; Ceni, C.; Auld, D.S.; Vaillancourt, Fçois.; Dorval, G.; Barker, P.A. 2005: P75 neurotrophin receptor reduces ligand-induced Trk receptor ubiquitination and delays Trk receptor internalization and degradation. Embo Reports 6(10): 936-941
Caporali, A.; Meloni, M.; Nailor, A.; Mitić, T.; Shantikumar, S.; Riu, F.; Sala-Newby, G.B.; Rose, L.; Besnier, M.; Katare, R.; Voellenkle, C.; Verkade, P.; Martelli, F.; Madeddu, P.; Emanueli, C. 2015: P75(NTR)-dependent activation of NF-κB regulates microRNA-503 transcription and pericyte-endothelial crosstalk in diabetes after limb ischaemia. Nature Communications 6: 8024
Bredesen, D.E.; Ye, X.; Tasinato, A.; Sperandio, S.; Wang, J.J.; Assa-Munt, N.; Rabizadeh, S. 1998: P75NTR and the concept of cellular dependence: seeing how the other half die. Cell Death and Differentiation 5(5): 365-371
Yao, X-Q.; Jiao, S-S.; Saadipour, K.; Zeng, F.; Wang, Q-H.; Zhu, C.; Shen, L-L.; Zeng, G-H.; Liang, C-R.; Wang, J.; Liu, Y-H.; Hou, H-Y.; Xu, X.; Su, Y-P.; Fan, X-T.; Xiao, H-L.; Lue, L-F.; Zeng, Y-Q.; Giunta, B.; Zhong, J-H.; Walker, D.G.; Zhou, H-D.; Tan, J.; Zhou, X-F.; Wang, Y-J. 2015: P75NTR ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer's disease. Molecular Psychiatry 20(11): 1301-1310
Li, J.; Zhao, M.; Wang, Y.; Shen, M.; Wang, S.; Tang, M.; Li, M.; Luo, Y.; Yang, K.; Wen, X. 2020: P75NTR optimizes the osteogenic potential of human periodontal ligament stem cells by up-regulating α1 integrin expression. Journal of cellular and molecular medicine 24(13): 7563-7575
Park, K.J.; Grosso, C.Ayala.; Aubert, I.; Kaplan, D.R.; Miller, F.D. 2010: P75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivity in the adult brain. Nature Neuroscience 13(5): 559-566
Lu, Q.; Qu, Y.; Ding, Y.; Kang, X. 2021: P75NTR/proBDNF Modulates Basal Cell Carcinoma (BCC) Immune Microenvironment via Necroptosis Signaling Pathway. Journal of Immunology Research 2021: 6652846
Barker, P.A. 1998: P75NTR: A study in contrasts. Cell Death and Differentiation 5(5): 346-356
Hirohashi, Y.; Wang, Q.; Liu, Q.; Du, X.; Zhang, H.; Sato, N.; Greene, M.I. 2006: P78/MCRS1 forms a complex with centrosomal protein Nde1 and is essential for cell viability. Oncogene 25(35): 4937-4946
Vasseur, S.; Hoffmeister, A.; Garcia-Montero, Aés.; Mallo, G.Vidal.; Feil, R.; Kühbandner, S.; Dagorn, J-Charles.; Iovanna, J.Lucio. 2002: P8-deficient fibroblasts grow more rapidly and are more resistant to adriamycin-induced apoptosis. Oncogene 21(11): 1685-1694
Turvey, M.E.; Klingler-Hoffmann, M.; Hoffmann, P.; McColl, S.R. 2015: P84 forms a negative regulatory complex with p110γ to control PI3Kγ signalling during cell migration. Immunology and Cell Biology 93(8): 735-743
Cosentino, C.; Di Domenico, M.; Porcellini, A.; Cuozzo, C.; De Gregorio, G.; Santillo, M.R.; Agnese, S.; Di Stasio, R.; Feliciello, A.; Migliaccio, A.; Avvedimento, E.V. 2007: P85 regulatory subunit of PI3K mediates cAMP-PKA and estrogens biological effects on growth and survival. Oncogene 26(14): 2095-2103
Tian, L.; Choi, S-Chul.; Murakami, Y.; Allen, J.; Morse, H.C.; Qi, C-Feng.; Krzewski, K.; Coligan, J.E. 2014: P85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression. Nature Communications 5: 3146
Mak, V.C.; Li, X.; Rao, L.; Zhou, Y.; Tsao, S.-W.; Cheung, L.W. 2021: P85β alters response to EGFR inhibitor in ovarian cancer through p38 MAPK-mediated regulation of DNA repair. Neoplasia 23(7): 718-730
Rao, L.; Mak, V.C.Y.; Zhou, Y.; Zhang, D.; Li, X.; Fung, C.C.Y.; Sharma, R.; Gu, C.; Lu, Y.; Tipoe, G.L.; Cheung, A.N.Y.; Mills, G.B.; Cheung, L.W.T. 2020: P85β regulates autophagic degradation of AXL to activate oncogenic signaling. Nature Communications 11(1): 2291
Di Cesare, A.; Paris, S.; Albertinazzi, C.; Dariozzi, S.; Andersen, J.; Mann, M.; Longhi, R.; de Curtis, I. 2000: P95-APP1 links membrane transport to Rac-mediated reorganization of actin. Nature Cell Biology 2(8): 521-530
Schwahn, D.J.; Medina, D. 1998: P96, a MAPK-related protein, is consistently downregulated during mouse mammary carcinogenesis. Oncogene 17(9): 1173-1178
Garrison, P.; Bangs, J.D. 2020: P97 Inhibitor CB-5083 Blocks ERAD in Trypanosoma brucei. Molecular and Biochemical Parasitology 239: 111313
Kaneko, Y.; Shimoda, K.; Ayala, R.; Goto, Y.; Panico, S.; Zhang, X.; Kondo, H. 2021: P97 and p47 function in membrane tethering in cooperation with FTCD during mitotic Golgi reassembly. EMBO Journal 40(9): E105853
Carlson, E.J.; Pitonzo, D.; Skach, W.R. 2006: P97 functions as an auxiliary factor to facilitate TM domain extraction during CFTR ER-associated degradation. EMBO Journal 25(19): 4557-4566
Ge, Y.; Tian, M.; Liu, L.; Wong, T.Pan.; Gong, B.; Wu, D.; Cho, T.; Lin, S.; Kast, Jürgen.; Lu, J.; Wang, Y.Tian. 2019: P97 regulates GluA1 homomeric AMPA receptor formation and plasma membrane expression. Nature Communications 10(1): 4089
Lee, S.Hyun.; McCormick, F. 2006: P97/DAP5 is a ribosome-associated factor that facilitates protein synthesis and cell proliferation by modulating the synthesis of cell cycle proteins. EMBO Journal 25(17): 4008-4019
Sonnenblick, A.; Venet, D.; Brohée, S.; Pondé, N.; Sotiriou, C. 2019: PAKT pathway activation is associated with PIK3CA mutations and good prognosis in luminal breast cancer in contrast to p-mTOR pathway activation. Npj Breast Cancer 5: 7
Purbey, P.Kumar.; Jayakumar, P.Cyril.; Patole, M.S.; Galande, S. 2006: PC6-2/caspase-6 system to purify glutathione-S-transferase-free recombinant fusion proteins expressed in Escherichia coli. Nature Protocols 1(4): 1820-1827
Claude, C.; Deep, A.; Kneyber, M.; Siddiqui, S.; Renolleau, S.; Morin, L.; Jacquemin, E.; Teglas, J.-P.; Gajdos, V.; Tissières, P.; Durand, P. 2020: PCLIF-SOFA is a reliable outcome prognostication score of critically ill children with cirrhosis: an ESPNIC multicentre study. Annals of Intensive Care 10(1): 137
Wang, J.; Wang, X.; Liu, T.; Yuan, X.; Chen, H.; He, Y.; Wu, S.; Yuan, Z.; Li, H.; Que, Z.; Yu, L.; Zhang, Y. 2021: PCO2 and CO2 evasion from two small suburban rivers: Implications of the watershed urbanization process. Science of the Total Environment 788: 147787
Yeomans, J.; Sastry, A. 2021: PCONUS 2 and pCONUS 2-HPC for the treatment of wide-necked intracranial aneurysms: Periprocedural, 6-month, and early 2-year follow-up outcomes. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology Surgical Procedures and Related Neurosciences 27(6): 805-814
Soubrier, F.; Cameron, B.; Manse, B.; Somarriba, S.; Dubertret, C.; Jaslin, G.; Jung, G.; Caer, C.L.; Dang, D.; Mouvault, J.M.; Scherman, D.; Mayaux, J.F.; Crouzet, J. 1999: PCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Therapy 6(8): 1482-1488
De Santis, D.; Rossini, L.; Tassi, L.; Didato, G.; Tringali, G.; Cossu, M.; Bramerio, M.; Padelli, F.; Regondi, M.C.; Colciaghi, F.; Aronica, E.; Spreafico, R.; Garbelli, R. 2020: PCREB expression in human tissues from epilepsy surgery. Epilepsia 61(6): 1240-1252
Li, S.; Yu, K.; Wu, G.; Zhang, Q.; Wang, P.; Zheng, J.; Liu, Z.-X.; Wang, J.; Gao, X.; Cheng, H. 2021: PCysMod: Prediction of Multiple Cysteine Modifications Based on Deep Learning Framework. Frontiers in Cell and Developmental Biology 9: 617366
Dobrijevic, D.; Nematollahi, L.A.; Hailes, H.C.; Ward, J.M. 2020: PET expression vector customized for efficient seamless cloning. Biotechniques 69(5): 384-387
Grier, A.E.; Burleigh, S.; Sahni, J.; Clough, C.A.; Cardot, V.; Choe, D.C.; Krutein, M.C.; Rawlings, D.J.; Jensen, M.C.; Scharenberg, A.M.; Jacoby, K. 2016: PEVL: A Linear Plasmid for Generating mRNA IVT Templates With Extended Encoded Poly(A) Sequences. Molecular Therapy. Nucleic Acids 5: E306
Lu, T.; Zhang, X.; Huang, Y.; Guo, D.; Huang, F.; Xu, Q.; Hu, Y.; Ou-Yang, L.; Lin, J.; Yan, Z.; Qu, X. 2020: PFISTA-SENSE-ResNet for parallel MRi reconstruction. Journal of Magnetic Resonance 318: 106790
Liu, M-Qi.; Zeng, W-Feng.; Fang, P.; Cao, W-Qian.; Liu, C.; Yan, G-Quan.; Zhang, Y.; Peng, C.; Wu, J-Qiang.; Zhang, X-Jin.; Tu, H-Jun.; Chi, H.; Sun, R-Xiang.; Cao, Y.; Dong, M-Qiu.; Jiang, B-Yun.; Huang, J-Ming.; Shen, H-Li.; Wong, C.C.L.; He, S-Min.; Yang, P-Yuan. 2017: PGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nature Communications 8(1): 438
Zeng, W-Feng.; Liu, M-Qi.; Zhang, Y.; Wu, J-Qiang.; Fang, P.; Peng, C.; Nie, A.; Yan, G.; Cao, W.; Liu, C.; Chi, H.; Sun, R-Xiang.; Wong, C.C.L.; He, S-Min.; Yang, P. 2016: PGlyco: a pipeline for the identification of intact N-glycopeptides by using HCD- and CID-MS/MS and MS3. Scientific Reports 6: 25102
Pujara, N.; Giri, R.; Wong, K.Y.; Qu, Z.; Rewatkar, P.; Moniruzzaman, M.; Begun, J.; Ross, B.P.; McGuckin, M.; Popat, A. 2021: PH - Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery. Journal of Colloid and Interface Science 589: 45-55
Farh, M.E.-A.; Abdellaoui, N.; Seo, J.-A. 2021: PH Changes have a Profound Effect on Gene Expression, Hydrolytic Enzyme Production, and Dimorphism in Saccharomycopsis fibuligera. Frontiers in Microbiology 12: 672661
Afzal, S.; Lone, M.S.; Nazir, N.; Dar, A.A. 2021: PH Changes in the Micelle-Water Interface of Surface-Active Ionic Liquids Dictate the Stability of Encapsulated Curcumin: An Insight Through a Unique Interfacial Reaction between Arenediazonium Ions and t-Butyl Hydroquinone. Acs Omega 6(23): 14985-15000
Bian, Y.; Chen, X.; Ren, Z.J. 2020: PH Dependence of Phosphorus Speciation and Transport in Flow-Electrode Capacitive Deionization. Environmental Science and Technology 54(14): 9116-9123
Amorim, J.és.V.; Wu, S.; Klimchuk, K.; Lau, C.; Williams, F.J.; Huang, Y.; Zhao, R. 2020: PH Dependence of the OH Reactivity of Organic Acids in the Aqueous Phase. Environmental Science and Technology 54(19): 12484-12492
Deng, S.; Ling, D.; Zhou, B.; Gong, Y.; Shen, X.; Liu, L.; Zhao, H. 2021: PH Effect of Natural Gas Hydrate on X80 Steel Solid-Liquid Phase Scouring Corrosion. Acs Omega 6(4): 3017-3023
Johnson, M.K.; Venkatesh, M.; Liu, N.; Breuer, C.R.; Shada, A.L.; Greenberg, J.A.; Lidor, A.O.; Funk, L.M. 2021: PH Impedance Parameters Associated with Improvement in GERD Health-Related Quality of Life Following Anti-reflux Surgery. Journal of Gastrointestinal Surgery: Official Journal of the Society for Surgery of the Alimentary Tract 25(1): 28-35
Murugan, E.; Venkatraman, A.; Lei, Z.; Mouvet, V.; Rui Yi Lim, R.; Muruganantham, N.; Goh, E.; Swee Lim Peh, G.; Beuerman, R.W.; Chaurasia, S.S.; Rajamani, L.; Mehta, J.S. 2016: PH Induced Conformational Transitions in the Transforming Growth Factor β-Induced Protein (TGFβIp) Associated Corneal Dystrophy Mutants. Scientific Reports 6: 23836
Dias, V.H.C.; Malacrida, A.M.; Dos Santos, A.R.; Batista, A.F.P.; Campanerut-Sá, P.A.Z.; Braga, G.; Bona, E.; Caetano, W.; Mikcha, J.M.G. 2021: PH interferes in photoinhibitory activity of curcumin nanoencapsulated with pluronic® P123 against Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy 33: 102085
Hu, Q.; Zhang, Y.; Wang, T.; Sun, W.; Tong, Z. 2021: PH Responsive Strong Polyion Complex Shape Memory Hydrogel with Spontaneous Shape Changing and Information Encryption. Macromolecular Rapid Communications 42(9): E2000747
Zhao, X.; Zhao, K.-C.; Chen, L.-J.; Liu, Y.-S.; Liu, J.-L.; Yan, X.-P. 2020: PH Reversibly Switchable Nanocapsule for Bacteria-Targeting Near-Infrared Fluorescence Imaging-Guided Precision Photodynamic Sterilization. Acs Applied Materials and Interfaces 12(41): 45850-45858
Ludwanowski, S.; Ari, M.; Parison, K.; Kalthoum, S.; Straub, P.; Pompe, N.; Weber, S.; Walter, M.; Walther, A. 2020: PH Tuning of Water-Soluble Arylazopyrazole Photoswitches. Chemistry 26(58): 13203-13212
Baysal, E.; Sari, D.; Vural, F.; Çağırgan, Sçkin.; Saydam, Güray.; Töbü, M.; Şahin, F.; Soyer, N.; Gediz, Füsun.; Acarlar, C.; Timur, E.; Güngör, Aşe. 2021: PH Value in Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplantation. Seminars in Oncology Nursing 2021: 151146
Li, C.; Wang, Y.; Zhang, S.; Zhang, J.; Wang, F.; Sun, Y.; Huang, L.; Bian, W. 2021: PH and ROS sequentially responsive podophyllotoxin prodrug micelles with surface charge-switchable and self-amplification drug release for combating multidrug resistance cancer. Drug Delivery 28(1): 680-691
Wang, C.; Liu, H.; Liu, S.; Wang, Z.; Zhang, J. 2020: PH and Redox Dual-Sensitive Covalent Organic Framework Nanocarriers to Resolve the Dilemma Between Extracellular Drug Loading and Intracellular Drug Release. Frontiers in Chemistry 8: 488
Wu, B.-Y.; Le, X.-X.; Jian, Y.-K.; Lu, W.; Yang, Z.-Y.; Zheng, Z.-K.; Théato, P.; Zhang, J.-W.; Zhang, A.; Chen, T. 2021: PH and Thermo Dual-Responsive Fluorescent Hydrogel Actuator. Macromolecular Rapid Communications 42(19): E2100527
Chaudhari, R.; Joshi, A.; Srivastava, R. 2017: PH and Urea Estimation in Urine Samples using Single Fluorophore and Ratiometric Fluorescent Biosensors. Scientific Reports 7(1): 5840
Kashif, M.; Bharati, A.P.; Chaturvedi, S.K.; Khan, R.H.; Ahmad, A.; Kumar, B.; Zamzami, M.A.; Ahmad, V.; Kumari, S. 2020: PH and alcohol induced structural transition in Ntf2 a nuclear transport factor of Saccharomyces cerevisiae. International Journal of Biological Macromolecules 159: 79-86
Zhang, B.; Zhang, L.; Duan, E.; Zhang, R.; Liu, J.; Shi, P.; Mei, Y.; Li, R.; Zhang, L. 2021: PH and charge reversal-driven nanoplatform for efficient delivery of therapeutics. Colloids and Surfaces. B Biointerfaces 208: 112106
Raja, S.Thirupathi.Kumara.; Thiruselvi, T.; Mandal, A.Baran.; Gnanamani, A. 2015: PH and redox sensitive albumin hydrogel: A self-derived biomaterial. Scientific Reports 5: 15977
Chen, L.; Zhuang, W.; Hu, C.; Yu, T.; Su, X.; Liang, Z.; Li, G.; Wang, Y. 2020: PH and singlet oxygen dual-responsive GEM prodrug micelles for efficient combination therapy of chemotherapy and photodynamic therapy. Journal of Materials Chemistry. B 8(26): 5645-5654
İsbir, C.; Kıllı, İs.; Taşkınlar, H.; Naycı, A. 2022: PH and specific gravity of corrosive agents as indicators in caustic injuries. Pediatrics International: Official Journal of the Japan Pediatric Society 64(1): E14931
Manning, R.H.; Edgar, W.M. 1993: PH changes in plaque after eating snacks and meals, and their modification by chewing sugared- or sugar-free gum. British Dental Journal 174(7): 241-244
Fersht, A.R.; Renard, M. 1974: PH dependence of chymotrypsin catalysis. Appendix: substrate binding to dimeric alpha-chymotrypsin studied by x-ray diffraction and the equilibrium method. Biochemistry 13(7): 1416-1426
Vesell, E.S. 1966: PH dependence of lactate dehydrogenase isozyme inhibition by substrate. Nature 210(5034): 421-422
Davletshina, L.N.; Semin, B.K. 2020: PH dependence of photosystem Ii photoinhibition: relationship with structural transition of oxygen-evolving complex at the pH of thylakoid lumen. Photosynthesis Research 145(2): 135-143
Quade, B.N.; Marshall, A.; Parker, M.D. 2020: PH dependence of the Slc4a11-mediated H+ conductance is influenced by intracellular lysine residues and modified by disease-linked mutations. American Journal of Physiology. Cell Physiology 319(2): C359-C370
Li, C.; Evans, J.; Wang, N.; Guo, T.; He, S. 2019: PH dependence of the chirality of nematic cellulose nanocrystals. Scientific Reports 9(1): 11290
Narvekar, A.; Gawali, S.L.; Hassan, P.A.; Jain, R.; Dandekar, P. 2020: PH dependent aggregation and conformation changes of rituximab using SAXS and its comparison with the standard regulatory approach of biophysical characterization. International Journal of Biological Macromolecules 164: 3084-3097
Boyer, M.J.; Horn, I.; Firestone, R.A.; Steele-Norwood, D.; Tannock, I.F. 1993: PH dependent cytotoxicity of N-dodecylimidazole: a compound that acquires detergent properties under acidic conditions. British Journal of Cancer 67(1): 81-87
Silin, V.I.; Hoogerheide, D.P. 2021: PH dependent electrical properties of the inner- and outer- leaflets of biomimetic cell membranes. Journal of Colloid and Interface Science 594: 279-289
Wijesinghe, D.; Arachchige, M.C.M.; Lu, A.; Reshetnyak, Y.K.; Andreev, O.A. 2013: PH dependent transfer of nano-pores into membrane of cancer cells to induce apoptosis. Scientific Reports 3: 3560
Sylvain, Fçois-Étienne.; Cheaib, B.; Llewellyn, M.; Gabriel Correia, T.; Barros Fagundes, D.; Luis Val, A.; Derome, N. 2016: PH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui (Colossoma macropomum). Scientific Reports 6: 32032
Westphal, L.; Strehmel, N.; Eschen-Lippold, L.; Bauer, N.; Westermann, B.; Rosahl, S.; Scheel, D.; Lee, J. 2019: PH effects on plant calcium fluxes: lessons from acidification-mediated calcium elevation induced by the γ-glutamyl-leucine dipeptide identified from Phytophthora infestans. Scientific Reports 9(1): 4733
Liu, X.; Schlexer, P.; Xiao, J.; Ji, Y.; Wang, L.; Sandberg, R.B.; Tang, M.; Brown, K.S.; Peng, H.; Ringe, S.; Hahn, C.; Jaramillo, T.F.; Nørskov, J.K.; Chan, K. 2019: PH effects on the electrochemical reduction of CO (2) towards C 2 products on stepped copper. Nature Communications 10(1): 32
Glikman, D.; García Rey, N.; Richert, M.; Meister, K.; Braunschweig, B.ör. 2022: PH effects on the molecular structure and charging state of β-Escin biosurfactants at the air-water interface. Journal of Colloid and Interface Science 607(Part 2): 1754-1761
Zheng, T.; Jäättelä, M.; Liu, B. 2020: PH gradient reversal fuels cancer progression. International Journal of Biochemistry and Cell Biology 125: 105796
Volk, T.; Jähde, E.; Fortmeyer, H.P.; Glüsenkamp, K.H.; Rajewsky, M.F. 1993: PH in human tumour xenografts: effect of intravenous administration of glucose. British Journal of Cancer 68(3): 492-500
Chowhan, R.Kaur.; Hotumalani, S.; Rahaman, H.; Singh, L.Rajendrakumar. 2021: PH induced conformational alteration in human peroxiredoxin 6 might be responsible for its resistance against lysosomal pH or high temperature. Scientific Reports 11(1): 9657
Schlichting, I.; Reinstein, J. 1999: PH influences fluoride coordination number of the AlFx phosphoryl transfer transition state analog. Nature Structural Biology 6(8): 721-723
Hofstetter, F. 1947: PH measurements with the glass electrode in gastric juice. Gastroenterologia 72(3-4): 201-215
Heller, W.M. 1969: PH of intravenous solutions. New England Journal of Medicine 280(16): 901
Kossler, A.W. 1969: PH of intravenous solutions. New England Journal of Medicine 280(16): 901
Kautz, H.; Parker, E.A. 1969: PH of intravenous solutions. New England Journal of Medicine 280(16): 901-902
Doemel, W.N.; Brock, T.D. 1971: PH of very acid soils. Nature 229(5286): 574
Zhang, J.; Liu, L.; Wang, L.; Zhu, W.; Wang, H. 2020: PH responsive zwitterionic-to-cationic transition for safe self-defensive antibacterial application. Journal of Materials Chemistry. B 8(38): 8908-8913
Swami, R.; Kumar, Y.; Chaudhari, D.; Katiyar, S.S.; Kuche, K.; Katare, P.B.; Banerjee, S.K.; Jain, S. 2021: PH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel. Materials Science and Engineering. C Materials for Biological Applications 120: 111664
Harrow, B.R. 1969: PH vs acid load. New England Journal of Medicine 280(26): 1481
Harris, R.J.; Richards, P.G.; Symon, L.; Habib, A.H.; Rosenstein, J. 1987: PH, K+, and PO2 of the extracellular space during ischaemia of primate cerebral cortex. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 7(5): 599-604
Bouwstra, J.A.; Gooris, G.S.; Dubbelaar, F.E.; Weerheim, A.M.; Ponec, M. 1998: PH, cholesterol sulfate, and fatty acids affect the stratum corneum lipid organization. Journal of Investigative Dermatology. Symposium Proceedings 3(2): 69-74
Coloma, I.; Cortijo, M.; Fernández-Sánchez, I.és.; Perles, J.; Priego, J.é L.; Gutiérrez, C.; Jiménez-Aparicio, R.; Desvoyes, B.én.éd.; Herrero, S. 2020: PH- and Time-Dependent Release of Phytohormones from Diruthenium Complexes. Inorganic Chemistry 59(11): 7779-7788
Ghosh, G.; Fernández, G. 2020: PH- and concentration-dependent supramolecular self-assembly of a naturally occurring octapeptide. Beilstein Journal of Organic Chemistry 16: 2017-2025
Nam, S.H.; Jang, J.; Cheon, D.H.; Chong, S.-E.; Ahn, J.H.; Hyun, S.; Yu, J.; Lee, Y. 2021: PH-Activatable cell penetrating peptide dimers for potent delivery of anticancer drug to triple-negative breast cancer. Journal of Controlled Release: Official Journal of the Controlled Release Society 330: 898-906
Kanagaraj, K.; Liang, W.; Rao, M.; Yao, J.; Wu, W.; Cheng, G.; Ji, J.; Wei, X.; Peng, C.; Yang, C. 2020: PH-Controlled Chirality Inversion in Enantiodifferentiating Photocyclodimerization of 2-Antharacenecarboxylic Acid Mediated by γ-Cyclodextrin Derivatives. Organic Letters 22(14): 5273-5278
Guo, Y.; Yao, D.; Zheng, B.; Sun, X.; Zhou, X.; Wei, B.; Xiao, S.; He, M.; Li, C.; Liang, H. 2020: PH-Controlled Detachable DNA Circuitry and its Application in Resettable Self-Assembly of Spherical Nucleic Acids. Acs Nano 14(7): 8317-8327
Nghiem, T.-L.; Chakroun, R.; Janoszka, N.; Chen, C.; Klein, K.; Wong, C.K.; Gröschel, A.é H. 2020: PH-Controlled Hierarchical Assembly/Disassembly of Multicompartment Micelles in Water. Macromolecular Rapid Communications 41(18): E2000301
Cai, B.; Li, S.; Jiang, W.; Zhou, Y. 2021: PH-Controlled Stereoregular Polymerization of Poly(methyl methacrylate) in Vesicle Membranes. Langmuir: the Acs Journal of Surfaces and Colloids 37(43): 12746-12752
Carvounis, C.P.; Levine, S.D.; Hays, R.M. 1979: PH-Dependence of water and solute transport in toad urinary bladder. Kidney International 15(5): 513-519
Valle-González, E.R.; Jackman, J.A.; Yoon, B.Kyeong.; Mokrzecka, N.; Cho, N-Joon. 2020: PH-Dependent Antibacterial Activity of Glycolic Acid: Implications for Anti-Acne Formulations. Scientific Reports 10(1): 7491
Sarkar, A.; Roitberg, A.E. 2020: PH-Dependent Conformational Changes Lead to a Highly Shifted pKa for a Buried Glutamic Acid Mutant of SNase. Journal of Physical Chemistry. B 124(49): 11072-11080
Gaza, J.T.; Leyson, J.J.C.; Peña, G.T.; Nellas, R.B. 2021: PH-Dependent Conformations of an Antimicrobial Spider Venom Peptide, Cupiennin 1a, from Unbiased HREMD Simulations. Acs Omega 6(37): 24166-24175
Park, M.; Lee, J.S.; Jung, W.H.; Lee, Y.W. 2020: PH-Dependent Expression, Stability, and Activity of Malassezia restricta MrLip5 Lipase. Annals of Dermatology 32(6): 473-480
Hsieh, T.-L.; Law, S.; Garoff, S.; Tilton, R.D. 2021: PH-Dependent Interfacial Tension and Dilatational Modulus Synergism of Oil-Soluble Fatty Acid and Water-Soluble Cationic Surfactants at the Oil/Water Interface. Langmuir: the Acs Journal of Surfaces and Colloids 37(39): 11573-11581
Pan, Z.-Z.; Govedarica, A.; Nishihara, H.; Tang, R.; Wang, C.; Luo, Y.; Lv, W.; Kang, F.-Y.; Trifkovic, M.; Yang, Q.-H. 2021: PH-Dependent Morphology Control of Cellulose Nanofiber/Graphene Oxide Cryogels. Small 17(3): E2005564
Liu, Y.-Y.; Hua, X.; Zhang, Z.; Zhang, J.; Zhang, S.; Hu, P.; Long, Y.-T. 2020: PH-Dependent Water Clusters in Photoacid Solution: Real-Time Observation by ToF-SIMS at a Submicropore Confined Liquid-Vacuum Interface. Frontiers in Chemistry 8: 731
De Almeida Barbosa, N.M.; Gosset, P.; Réal, E.éo.; Ledentu, V.; Didier, P.; Ferré, N. 2020: PH-Dependent absorption spectrum of oxyluciferin analogues in the active site of firefly luciferase. Physical Chemistry Chemical Physics: Pccp 22(38): 21731-21740
Wang, C.; Chen, L.; Lu, Y.; Liu, J.; Zhao, R.; Sun, Y.; Sun, B.; Cuina, W. 2021: PH-Dependent complexation between β-lactoglobulin and lycopene: Multi-spectroscopy, molecular docking and dynamic simulation study. Food Chemistry 362: 130230
Wang, J.; Zhang, X.; Li, H.; Wang, C.; Li, H.; Keller, S.; Mishra, U.K.; Nener, B.D.; Parish, G.; Atkin, R. 2021: PH-Dependent surface charge at the interfaces between aluminum gallium nitride (AlGaN) and aqueous solution revealed by surfactant adsorption. Journal of Colloid and Interface Science 583: 331-339
Reddy, A.; Bozi, L.H.M.; Yaghi, O.K.; Mills, E.L.; Xiao, H.; Nicholson, H.E.; Paschini, M.; Paulo, J.A.; Garrity, R.; Laznik-Bogoslavski, D.; Ferreira, J.C.B.; Carl, C.S.; Sjøberg, K.A.; Wojtaszewski, J.ør.F.P.; Jeppesen, J.F.; Kiens, B.; Gygi, S.P.; Richter, E.A.; Mathis, D.; Chouchani, E.T. 2020: PH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise. Cell 183(1): 62-75.E17
Mahajan, S.; Singh, D.; Sharma, R.; Singh, G.; Bedi, N. 2021: PH-Independent Dissolution and Enhanced Oral Bioavailability of Aripiprazole-Loaded Solid Self-microemulsifying Drug Delivery System. Aaps Pharmscitech 22(1): 24
Zeng, H.; Zhang, G.; Ji, Q.; Liu, H.; Hua, X.; Xia, H.; Sillanpää, M.; Qu, J. 2020: PH-Independent Production of Hydroxyl Radical from Atomic H*-Mediated Electrocatalytic H2O2 Reduction: a Green Fenton Process without Byproducts. Environmental Science and Technology 54(22): 14725-14731
Hofer, F.; Kamenik, A.S.; Fernández-Quintero, M.L.; Kraml, J.; Liedl, K.R. 2020: PH-Induced Local Unfolding of the Phl p 6 Pollen Allergen from cpH-MD. Frontiers in Molecular Biosciences 7: 603644
Raoufi, N.; Kadkhodaee, R.; Fang, Y.; Phillips, G.O. 2020: PH-Induced structural transitions in whey protein isolate and ultrasonically solubilized Persian gum mixture. Ultrasonics Sonochemistry 68: 105190
Rath, M.; Weaver, J.; Wang, M.; Woehl, T. 2021: PH-Mediated Aggregation-to-Separation Transition for Colloids Near Electrodes in Oscillatory Electric Fields. Langmuir: the Acs Journal of Surfaces and Colloids 37(31): 9346-9355
Ai, Q.; Fu, Q.; Liang, F. 2020: PH-Mediated Single Molecule Conductance of Cucurbit[7]uril. Frontiers in Chemistry 8: 736
Wang, S. 2021: PH-Responsive Amphiphilic Carboxylate Polymers: Design and Potential for Endosomal Escape. Frontiers in Chemistry 9: 645297
Liang, J.; Liu, F.; Zou, J.; Xu, H.H.K.; Han, Q.; Wang, Z.; Li, B.; Yang, B.; Ren, B.; Li, M.; Peng, X.; Li, J.; Zhang, S.; Zhou, X.; Cheng, L. 2020: PH-Responsive Antibacterial Resin Adhesives for Secondary Caries Inhibition. Journal of Dental Research 99(12): 1368-1376
Yang, X.; Yu, T.; Zeng, Y.; Lian, K.; Zhou, X.; Ke, J.; Li, Y.; Yuan, H.; Hu, F. 2020: PH-Responsive Biomimetic Polymeric Micelles as Lymph Node-Targeting Vaccines for Enhanced Antitumor Immune Responses. Biomacromolecules 21(7): 2818-2828
Liu, Z.; Xie, Z.; Wu, X.; Chen, Z.; Li, W.; Jiang, X.; Cao, L.; Zhang, D.; Wang, Q.; Xue, P.; Zhang, H. 2021: PH-responsive black phosphorus quantum dots for tumor-targeted photodynamic therapy. Photodiagnosis and Photodynamic Therapy 35: 102429
Shimanovich, U.; Levin, A.; Eliaz, D.; Michaels, T.; Toprakcioglu, Z.; Frohm, B.; De Genst, E.; Linse, S.; Åkerfeldt, K.S.; Knowles, T.P.J. 2021: PH-Responsive Capsules with a Fibril Scaffold Shell Assembled from an Amyloidogenic Peptide. Small 17(26): E2007188
Gong, Y.; Mohd, S.; Wu, S.; Liu, S.; Pei, Y.; Luo, X. 2021: PH-Responsive Cellulose-Based Microspheres Designed as an Effective Oral Delivery System for Insulin. Acs Omega 6(4): 2734-2741
Zheng, L.L.; Li, J.Z.; Li, Y.X.; Gao, J.B.; Dong, J.X.; Gao, Z.F. 2021: PH-Responsive DNA Motif: from Rational Design to Analytical Applications. Frontiers in Chemistry 9: 732770
Zhang, C.-H.; Cai, K.; Zhang, P.-G.; Wu, Z.; Ma, M.; Chen, B. 2022: PH-Responsive DNA nanoassembly for detection and combined therapy of tumor. Biosensors and Bioelectronics 195: 113654
Cao, Z.; Li, W.; Liu, R.; Li, C.; Song, Y.; Liu, G.; Chen, Y.; Lu, C.; Lu, A.; Liu, Y. 2020: PH-Responsive Fluorescence Enhanced Nanogel for Targeted Delivery of AUR and CDDP Against Breast Cancer. International Journal of Nanomedicine 15: 8369-8382
Duan, Q.; Wang, F.; Zhang, H.; Lu, K. 2020: PH-Responsive Host-Guest Complexations Between a Water-Soluble Pillar[6]arene Dodecyl-Ammonium Chloride and Aromatic Sulfonic Acids. Frontiers in Chemistry 8: 588201
Makhathini, S.S.; Omolo, C.A.; Gannimani, R.; Mocktar, C.; Govender, T. 2020: PH-Responsive Micelles from an Oleic Acid Tail and Propionic Acid Heads Dendritic Amphiphile for the Delivery of Antibiotics. Journal of Pharmaceutical Sciences 109(8): 2594-2606
Mehmood, R.; Ariotti, N.; Yang, J.L.; Koshy, P.; Sorrell, C.C. 2018: PH-Responsive Morphology-Controlled Redox Behavior and Cellular Uptake of Nanoceria in Fibrosarcoma. Acs Biomaterials Science and Engineering 4(3): 1064-1072
Shahid, N.; Erum, A.; Zaman, M.; Tulain, U.R.; Shoaib, Q.-U.-A.; Majeed, A.; Rasool, M.F.; Imran, I.; Alshehri, S.; Noorani, B.; Alqahtani, F. 2021: PH-Responsive Nanocomposite Based Hydrogels for the Controlled Delivery of Ticagrelor; in Vitro and in Vivo Approaches. International Journal of Nanomedicine 16: 6345-6366
Xu, C.; Guan, X.; Lin, L.; Wang, Q.; Gao, B.; Zhang, S.; Li, Y.; Tian, H. 2018: PH-Responsive Natural Polymeric Gene Delivery Shielding System Based on Dynamic Covalent Chemistry. Acs Biomaterials Science and Engineering 4(1): 193-199
Wang, D.; Fan, Z.; Zhang, X.; Li, H.; Sun, Y.; Cao, M.; Wei, G.; Wang, J. 2021: PH-Responsive Self-Assemblies from the Designed Folic Acid-Modified Peptide Drug for Dual-Targeting Delivery. Langmuir: the Acs Journal of Surfaces and Colloids 37(1): 339-347
Ishizaki, Y.; Yamamoto, S.; Miyashita, T.; Mitsuishi, M. 2021: PH-Responsive Ultrathin Nanoporous SiO2 Films for Selective Ion Permeation. Langmuir: the Acs Journal of Surfaces and Colloids 37(18): 5627-5634
Kang, X.; Kang, W.; Yang, H.; Hou, X.; Zhu, T.; Wang, P.; Li, M.; Jiang, H.; Zhang, M. 2020: PH-Responsive aggregates transition from spherical micelles to WLMs induced by hydrotropes based on the dynamic imine bond. Soft Matter 16(42): 9705-9711
Freemont, T.J.; Saunders, B.R. 2008: PH-Responsive microgel dispersions for repairing damaged load-bearing soft tissue. Soft Matter 4(5): 919-924
Zhang, Z.; Wells, C.J.R.; King, A.M.; Bear, J.C.; Davies, G.-L.; Williams, G.R. 2020: PH-Responsive nanocomposite fibres allowing MRi monitoring of drug release. Journal of Materials Chemistry. B 8(32): 7264-7274
Dai, S.; Ravi, P.; Tam, K.C. 2008: PH-Responsive polymers: synthesis, properties and applications. Soft Matter 4(3): 435-449
Burns, K.E.; McCleerey, T.P.; Thévenin, D. 2016: PH-Selective Cytotoxicity of pHLIP-Antimicrobial Peptide Conjugates. Scientific Reports 6: 28465
Kim, D.H.; Seo, J.; Na, K. 2020: PH-Sensitive Carbon Dots for Enhancing Photomediated Antitumor Immunity. Molecular Pharmaceutics 17(7): 2532-2545
Lee, N.-K.; Park, S.S.; Ha, C.-S. 2020: PH-Sensitive Drug Delivery System Based on Mesoporous Silica Modified with Poly-L-Lysine (PLL) as a Gatekeeper. Journal of Nanoscience and Nanotechnology 20(11): 6925-6934
Yang, Q.; Dong, Y.; Wang, X.; Lin, Z.; Yan, M.; Wang, W.; Dong, A.; Zhang, J.; Huang, P.; Wang, C. 2021: PH-Sensitive Polycations for siRNA Delivery: Effect of Asymmetric Structures of Tertiary Amine Groups. Macromolecular Bioscience 21(5): E2100025
Liu, P.; Xu, G.; Pranantyo, D.; Xu, L.Q.; Neoh, K.-G.; Kang, E.-T. 2018: PH-Sensitive Zwitterionic Polymer as an Antimicrobial Agent with Effective Bacterial Targeting. Acs Biomaterials Science and Engineering 4(1): 40-46
Skvortsov, I.A.; Zimcik, P.; Stuzhin, P.A.; Novakova, V. 2020: PH-Sensitive subphthalocyanines and subazaphthalocyanines. Dalton Transactions 49(32): 11090-11098
Jin, J.; Dai, S.; Li, X.; Liu, Y.; Lu, H. 2021: PH-Switchable Latexes Based on the Nonionic Amphiphilic Diblock Copolymer with a Chargeable End-Group on the Core-Forming Block. Langmuir: the Acs Journal of Surfaces and Colloids 37(20): 6123-6131
Karaky, K.; Brochon, C.; Schlatter, G.; Hadziioannou, G. 2008: PH-Switchable supramolecular "sliding" gels based on polyrotaxanes of polyethyleneimine-block-poly(ethylene oxide)-block-polyethyleneimine block copolymer and : synthesis and swelling behaviour. Soft Matter 4(6): 1165-1168
Zhuang, J.; Wright Carlsen, R.; Sitti, M. 2015: PH-Taxis of Biohybrid Microsystems. Scientific Reports 5: 11403
Scalzone, A.; Bonifacio, M.A.; Cometa, S.; Cucinotta, F.; De Giglio, E.; Ferreira, A.M.; Gentile, P. 2020: PH-Triggered Adhesiveness and Cohesiveness of Chondroitin Sulfate-Catechol Biopolymer for Biomedical Applications. Frontiers in Bioengineering and Biotechnology 8: 712
Wei, H.; Vikesland, P.J. 2015: PH-Triggered Molecular Alignment for Reproducible SERS Detection via an AuNP/Nanocellulose Platform. Scientific Reports 5: 18131
Ress, J.; Martin, U.; Bosch, J.; Bastidas, D.M. 2020: PH-Triggered Release of NaNO2 Corrosion Inhibitors from Novel Colophony Microcapsules in Simulated Concrete Pore Solution. Acs Applied Materials and Interfaces 12(41): 46686-46700
Hata, Y.; Kojima, T.; Maeda, T.; Sawada, T.; Serizawa, T. 2020: PH-Triggered Self-Assembly of Cellulose Oligomers with Gelatin into a Double-Network Hydrogel. Macromolecular Bioscience 20(9): E2000187
Park, D.; Cheng, J.; Park, J.B.; Shin, S.; Lee, S.-H.; Hong, B.H.; Kim, S.H.; Hyun, J.; Yang, C. 2019: PH-Triggered Silk Fibroin/Alginate Structures Fabricated in Aqueous Two-Phase System. Acs Biomaterials Science and Engineering 5(11): 5897-5905
Huang, L.; Jiang, S.; Cai, B.; Wang, G.; Wang, Z.; Wang, L. 2021: PH-Triggered nanoreactors as oxidative stress amplifiers for combating multidrug-resistant biofilms. Chemical Communications 57(38): 4662-4665
Elsner, N.; Kozlovskaya, V.; Sukhishvili, S.A.; Fery, A. 2006: PH-Triggered softening of crosslinked hydrogen-bonded capsules. Soft Matter 2(11): 966-972
Bossard, F.éd.ér.; Aubry, T.; Gotzamanis, G.; Tsitsilianis, C. 2006: PH-Tunable rheological properties of a telechelic cationic polyelectrolyte reversible hydrogel. Soft Matter 2(6): 510-516
Wang, H.; Shi, W.; Zeng, D.; Huang, Q.; Xie, J.; Wen, H.; Li, J.; Yu, X.; Qin, L.; Zhou, Y. 2021: PH-activated, mitochondria-targeted, and redox-responsive delivery of paclitaxel nanomicelles to overcome drug resistance and suppress metastasis in lung cancer. Journal of Nanobiotechnology 19(1): 152
Shi, W.; Fang, W.-X.; Wang, J.-C.; Qiao, X.; Wang, B.; Guo, X. 2021: PH-controlled mechanism of photocatalytic RhB degradation over g-C3N4 under sunlight irradiation. Photochemical and Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology 20(2): 303-313
Sathiyaseelan, A.; Saravanakumar, K.; Mariadoss, A.V.A.; Wang, M.-H. 2021: PH-controlled nucleolin targeted release of dual drug from chitosan-gold based aptamer functionalized nano drug delivery system for improved glioblastoma treatment. Carbohydrate Polymers 262: 117907
Tseng, W-Hsuan.; Chen, S-Hua.; Hiramatsu, H. 2020: PH-controlled stacking direction of the β-strands in peptide fibrils. Scientific Reports 10(1): 22199
Ishak, S.; Mandal, S.; Lee, H-Seung.; Singh, J.Kumar. 2021: PH-controlled synthesis of sustainable lauric acid/SiO 2 phase change material for scalable thermal energy storage. Scientific Reports 11(1): 15012
Einholz, C.; Nohr, D.; Rodriguez, R.; Topitsch, A.; Kern, M.; Goldmann, J.; Chileshe, E.; Okasha, M.; Weber, S.; Schleicher, E. 2021: PH-dependence of signaling-state formation in Drosophila cryptochrome. Archives of Biochemistry and Biophysics 700: 108787
Zhang, X.; Liu, X.; Su, G.; Li, M.; Liu, J.; Wang, C.; Xu, D. 2021: PH-dependent and dynamic interactions of cystatin C with heparan sulfate. Communications Biology 4(1): 198
Guo, J.; Li, Y.; Sun, J.; Sun, R.; Zhou, S.; Duan, J.; Feng, W.; Liu, G.; Jiang, F. 2021: PH-dependent biological sulfidogenic processes for metal-laden wastewater treatment: Sulfate reduction or sulfur reduction?. Water Research 204: 117628
Hughes, N.R. 1973: PH-dependent changes in composition of carcinoembryonic antigen. Nature 243(5409): 523-526
Piszkiewicz, D. 1974: PH-dependent conformational change of gastrin. Nature 248(446): 341-342
Laptenko, O.; Kim, S-Sup.; Lee, J.; Starodubtseva, M.; Cava, F.; Berenguer, J.; Kong, X-Peng.; Borukhov, S. 2006: PH-dependent conformational switch activates the inhibitor of transcription elongation. EMBO Journal 25(10): 2131-2141
Darussalam, E.Y.; Peterfi, O.; Deckert-Gaudig, T.; Roussille, L.; Deckert, V. 2021: PH-dependent disintegration of insulin amyloid fibrils monitored with atomic force microscopy and surface-enhanced Raman spectroscopy. Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 256: 119672
Zhang, L.; Wu, F.; Lee, S.C.; Zhao, H.; Zhang, L. 2014: PH-dependent drug-drug interactions for weak base drugs: potential implications for new drug development. Clinical Pharmacology and Therapeutics 96(2): 266-277
Broesder, A.; Woerdenbag, H.J.; Prins, G.H.; Nguyen, D.N.; Frijlink, H.W.; Hinrichs, W.L.J. 2020: PH-dependent ileocolonic drug delivery, part I: in vitro and clinical evaluation of novel systems. Drug Discovery Today 25(8): 1362-1373
Broesder, A.; Kosta, A.-M.M.A.C.; Woerdenbag, H.J.; Nguyen, D.N.; Frijlink, H.W.; Hinrichs, W.L.J. 2020: PH-dependent ileocolonic drug delivery, part II: preclinical evaluation of novel drugs and novel excipients. Drug Discovery Today 25(8): 1374-1388
Lim, D.G.; Kang, E.; Jeong, S.H. 2020: PH-dependent nanodiamonds enhance the mechanical properties of 3D-printed hyaluronic acid nanocomposite hydrogels. Journal of Nanobiotechnology 18(1): 88
Yamashiro, T.; Yasujima, T.; Said, H.M.; Yuasa, H. 2020: PH-dependent pyridoxine transport by SLC19A2 and SLC19A3: Implications for absorption in acidic microclimates. Journal of Biological Chemistry 295(50): 16998-17008
England, C.J.; Gray, T.C.; Malla, S.R.L.; Oliveira, S.A.; Martin, B.R.; Beall, G.W.; Lewis, L.K. 2021: PH-dependent sedimentation of DNA in the presence of divalent, but not monovalent, metal ions. Analytical Biochemistry 616: 114099
Wang, J.; Wang, J.; Ning, X.; Liu, J.; Xia, H.; Wan, G.; Bai, Q. 2021: PH-dependent selective separation of acidic and basic proteins using quaternary ammoniation functionalized cysteine-zwitterionic stationary phase with RPLC/IEC mixed-mode chromatography. Talanta 225: 122084
Deissler, H.; Krammer, H.; Gillessen, A. 2021: PH-dependent vs. constant release of mesalazine in the treatment of ulcerative colitis: do drug delivery concepts determine therapeutic efficacy? (Review). Biomedical Reports 15(5): 96
Cristofari, C.; Rigo, R.; Greco, M.Laura.; Ghezzo, M.; Sissi, C. 2019: PH-driven conformational switch between non-canonical DNA structures in a C-rich domain of EGFR promoter. Scientific Reports 9(1): 1210
Wang, L.; Guo, C.; Chen, F.; Ning, J.; Zhong, Y.; Hu, Y. 2021: PH-induced hydrothermal synthesis of Bi2WO6 nanoplates with controlled crystal facets for switching bifunctional photocatalytic water oxidation/reduction activity. Journal of Colloid and Interface Science 602: 868-879
Roshal, D.; Konevtsova, O.; Lošdorfer Božič, A.; Podgornik, R.; Rochal, S. 2019: PH-induced morphological changes of proteinaceous viral shells. Scientific Reports 9(1): 5341
Vinothkumar, K.R.; Smits, S.H.J.; Kühlbrandt, W. 2005: PH-induced structural change in a sodium/proton antiporter from Methanococcus jannaschii. EMBO Journal 24(15): 2720-2729
Qu, F.; Chen, Y.; Jiang, D.; Zhao, X.-E. 2021: PH-modulated aggregation-induced emission of Au/Cu nanoclusters and its application to the determination of urea and dissolved ammonia. Mikrochimica Acta 188(4): 113
Li, C.; Roy, J.K.; Park, K.-C.; Cho, A.E.; Lee, J.; Kim, Y.-W. 2021: PH-promoted O-α-glucosylation of flavonoids using an engineered α-glucosidase mutant. Bioorganic Chemistry 107: 104581
Gunathilake, R.; Schurer, N.Y.; Shoo, B.A.; Celli, A.; Hachem, J-Pierre.; Crumrine, D.; Sirimanna, G.; Feingold, K.R.; Mauro, T.M.; Elias, P.M. 2009: PH-regulated mechanisms account for pigment-type differences in epidermal barrier function. Journal of Investigative Dermatology 129(7): 1719-1729
Yang, L.; Huang, J.; Cao, L.; Shi, L.; Yu, Q.; Kong, X.; Jie, Y. 2016: PH-regulated template-free assembly of Sb4O5Cl2 hollow microsphere crystallites with self-narrowed bandgap and optimized photocatalytic performance. Scientific Reports 6: 27765
Zhong, Y.; Zou, Y.; Liu, L.; Li, R.; Xue, F.; Yi, T. 2020: PH-responsive Ag2S nanodots loaded with heat shock protein 70 inhibitor for photoacoustic imaging-guided photothermal cancer therapy. Acta Biomaterialia 115: 358-370
Li, Y.; Yue, S.; Cao, J.; Zhu, C.; Wang, Y.; Hai, X.; Song, W.; Bi, S. 2020: PH-responsive DNA nanomicelles for chemo-gene synergetic therapy of anaplastic large cell lymphoma. Theranostics 10(18): 8250-8263
Wang, L.; Wei, P.; Stumpf, S.; Schubert, U.S.; Hoeppener, S. 2020: PH-responsive SERS substrates based on AgNP-polyMETAC composites on patterned self-assembled monolayers. Nanotechnology 31(46): 465604
Emami, E.; Mousazadeh, M.H. 2021: PH-responsive zwitterionic carbon dots for detection of rituximab antibody. Luminescence: the Journal of Biological and Chemical Luminescence 36(5): 1198-1208
Gontsarik, M.; Mansour, A.B.; Hong, L.; Guizar-Sicairos, M.; Salentinig, S. 2021: PH-responsive aminolipid nanocarriers for antimicrobial peptide delivery. Journal of Colloid and Interface Science 603: 398-407
Dong, J.; Yu, Y.; Pei, Y.; Pei, Z. 2022: PH-responsive aminotriazole doped metal organic frameworks nanoplatform enables self-boosting reactive oxygen species generation through regulating the activity of catalase for targeted chemo/chemodynamic combination therapy. Journal of Colloid and Interface Science 607(Part 2): 1651-1660
Xiong, F.; Qin, Z.; Chen, H.; Lan, Q.; Wang, Z.; Lan, N.; Yang, Y.; Zheng, L.; Zhao, J.; Kai, D. 2020: PH-responsive and hyaluronic acid-functionalized metal-organic frameworks for therapy of osteoarthritis. Journal of Nanobiotechnology 18(1): 139
Klaus, T.; Deshmukh, S. 2021: PH-responsive antibodies for therapeutic applications. Journal of Biomedical Science 28(1): 11
Song, S.; Zhao, Y.; Li, Y.; Yang, X.; Wang, D.; Wen, Z.; Yang, M.; Lin, Q. 2021: PH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism. Talanta 221: 121621
Xie, Y.; Xu, Y.; Xu, J. 2021: PH-responsive pickering foam created from self-aggregate polymer using dynamic covalent bond. Journal of Colloid and Interface Science 597: 383-392
Hsu, C.-W.; Hsieh, M.-H.; Xiao, M.-C.; Chou, Y.-H.; Wang, T.-H.; Chiang, W.-H. 2020: PH-responsive polymeric micelles self-assembled from benzoic-imine-containing alkyl-modified PEGylated chitosan for delivery of amphiphilic drugs. International Journal of Biological Macromolecules 163: 1106-1116
Albuquerque, L.J.C.; Sincari, V.; Jäger, A.; Kucka, J.; Humajova, J.; Pankrac, J.; Paral, P.; Heizer, T.; Janouškova, O.; Davidovich, I.; Talmon, Y.; Pouckova, P.; Štěpánek, P.; Sefc, L.; Hruby, M.; Giacomelli, F.C.; Jäger, E.éz. 2021: PH-responsive polymersome-mediated delivery of doxorubicin into tumor sites enhances the therapeutic efficacy and reduces cardiotoxic effects. Journal of Controlled Release: Official Journal of the Controlled Release Society 332: 529-538
Yan, J.; Xia, D.; Zhou, W.; Li, Y.; Xiong, P.; Li, Q.; Wang, P.; Li, M.; Zheng, Y.; Cheng, Y. 2020: PH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis. Acta Biomaterialia 115: 220-234
Watanabe, K.; Sakata, A.; Saijo, Y.; Baba, T. 2020: PH-sensitive GaInAsP photonic crystal fractal band-edge laser. Optics Letters 45(22): 6202-6205
Boron, W.F.; Hogan, E.; Russell, J.M. 1988: PH-sensitive activation of the intracellular-pH regulation system in squid axons by ATP-gamma-S. Nature 332(6161): 262-265
Wang, X.; Zheng, Y.; Xue, Y.; Wu, Y.; Liu, Y.; Cheng, X.; Tang, R. 2021: PH-sensitive and tumor-targeting nanogels based on ortho ester-modified PEG for improving the in vivo anti-tumor efficiency of doxorubicin. Colloids and Surfaces. B Biointerfaces 207: 112024
Altman, A.; Kong, K-Fai. 2019: PH-sensitive anti-CTLA4 antibodies: yes to efficacy, no to toxicity. Cell Research 29(8): 601-602
Fukuda, Y.; Honda, Y. 1975: PH-sensitive cells at ventro--lateral surface of rat medulla oblongata. Nature 256(5515): 317-318
Rashidzadeh, H.; Rezaei, S.Jamal.Tabatabaei.; Zamani, S.; Sarijloo, E.; Ramazani, A. 2020: PH-sensitive curcumin conjugated micelles for tumor triggered drug delivery. Journal of Biomaterials Science. Polymer Edition 2020: 1-17
Xu, J.; Fang, Q.; Yang, L.; Gao, J.; Xue, Y.; Wang, X.; Tang, R. 2020: PH-sensitive deoxycholic acid dimer for improving doxorubicin delivery and antitumor activity in vivso. Colloids and Surfaces. B Biointerfaces 196: 111319
Sheng, Y.; Dai, W.; Gao, J.; Li, H.; Tan, W.; Wang, J.; Deng, L.; Kong, Y. 2020: PH-sensitive drug delivery based on chitosan wrapped graphene quantum dots with enhanced fluorescent stability. Materials Science and Engineering. C Materials for Biological Applications 112: 110888
Hong, W.; Shi, H.; Qiao, M.; Zhang, Z.; Yang, W.; Dong, L.; Xie, F.; Zhao, C.; Kang, L. 2017: PH-sensitive micelles for the intracellular co-delivery of curcumin and Pluronic L61 unimers for synergistic reversal effect of multidrug resistance. Scientific Reports 7: 42465
Xu, Y.; Wang, S.; Yang, L.; Dong, Y.; Zhang, Y.; Yan, G.; Tang, R. 2021: PH-sensitive micelles self-assembled from star-shaped TPGS copolymers with ortho ester linkages for enhanced MDR reversal and chemotherapy. Asian Journal of Pharmaceutical Sciences 16(3): 363-373
Park, Y.I.; Kwon, S.-H.; Lee, G.; Motoyama, K.; Kim, M.W.; Lin, M.; Niidome, T.; Choi, J.H.; Lee, R. 2021: PH-sensitive multi-drug liposomes targeting folate receptor β for efficient treatment of non-small cell lung cancer. Journal of Controlled Release: Official Journal of the Controlled Release Society 330: 1-14
Budker, V.; Gurevich, V.; Hagstrom, J.E.; Bortzov, F.; Wolff, J.A. 1996: PH-sensitive, cationic liposomes: a new synthetic virus-like vector. Nature Biotechnology 14(6): 760-764
Wang, Y.; Zhang, L.; Wang, P.; Xu, X.; Zhou, G. 2020: PH-shifting encapsulation of curcumin in egg white protein isolate for improved dispersity, antioxidant capacity and thermal stability. Food Research International 137: 109366
Jiang, W.; Strohman, M.J.; Somasundaram, S.; Ayyangar, S.; Hou, T.; Wang, N.; Mellins, E.D. 2015: PH-susceptibility of HLA-DO tunes DO/DM ratios to regulate HLA-DM catalytic activity. Scientific Reports 5: 17333
Laquerbe, S.; Carvalho, A.; Schmutz, M.; Poirier, A.; Baccile, N.; Ben Messaoud, G. 2021: PH-switchable pickering emulsions stabilized by polyelectrolyte-biosurfactant complex coacervate colloids. Journal of Colloid and Interface Science 600: 23-36
Zohreh, N.; Rastegaran, Z.; Hosseini, S.H.; Akhlaghi, M.; Istrate, C.; Busuioc, C. 2021: PH-triggered intracellular release of doxorubicin by a poly(glycidyl methacrylate)-based double-shell magnetic nanocarrier. Materials Science and Engineering. C Materials for Biological Applications 118: 111498
Wang, Z.; Yao, J.; Guan, Z.; Wu, H.; Cheng, H.; Yan, G.; Tang, R. 2021: PH-triggered small molecule nano-prodrugs emulsified from tryptamine-cinnamaldehyde twin drug for targeted synergistic glioma therapy. Colloids and Surfaces. B Biointerfaces 207: 112052
GhavamiNejad, A.; SamariKhalaj, M.; Aguilar, L.Erik.; Park, C.Hee.; Kim, C.Sang. 2016: PH/NIR Light-Controlled Multidrug Release via a Mussel-Inspired Nanocomposite Hydrogel for Chemo-Photothermal Cancer Therapy. Scientific Reports 6: 33594
Gu, R.; Wang, L.; Huang, X.; Zhang, J.; Ou, C.; Si, W.; Yu, J.; Wang, W.; Dong, X. 2020: PH/glutathione-responsive release of SO2 induced superoxide radical accumulation for gas therapy of cancer. Chemical Communications 56(94): 14865-14868
Makarasara, W.; Kumasaka, N.; Assawamakin, A.; Takahashi, A.; Intarapanich, A.; Ngamphiw, C.; Kulawonganunchai, S.; Ruangrit, U.; Fucharoen, S.; Kamatani, N.; Tongsima, S. 2009: PHCR: a parallel haplotype configuration reduction algorithm for haplotype interaction analysis. Journal of Human Genetics 54(11): 634-641
Brunner, A.; Riss, P.; Heinze, G.; Brustmann, H. 2012: PHH3 and survivin are co-expressed in high-risk endometrial cancer and are prognostic relevant. British Journal of Cancer 107(1): 84-90
Webb, B.A.; Aloisio, F.M.; Charafeddine, R.A.; Cook, J.; Wittmann, T.; Barber, D.L. 2021: PHLARE: a new biosensor reveals decreased lysosome pH in cancer cells. Molecular Biology of the Cell 32(2): 131-142
Crawford, T.; Moshnikova, A.; Roles, S.; Weerakkody, D.; DuPont, M.; Carter, L.M.; Shen, J.; Engelman, D.M.; Lewis, J.S.; Andreev, O.A.; Reshetnyak, Y.K. 2020: PHLIP ICG for delineation of tumors and blood flow during fluorescence-guided surgery. Scientific Reports 10(1): 18356
Li, Y.; Tsien, R.W. 2012: PHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nature Neuroscience 15(7): 1047-1053
Liu, A.; Huang, X.; He, W.; Xue, F.; Yang, Y.; Liu, J.; Chen, L.; Yuan, L.; Xu, P. 2021: PHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps. Nature Communications 12(1): 1413
Oliveira, N.F.B.; Silva, T.ás.F.D.; Reis, P.B.P.S.; Machuqueiro, M. 2021: PK a Calculations in Membrane Proteins from Molecular Dynamics Simulations. Methods in Molecular Biology 2315: 185-195
Del Vecchio, G.; Labuz, D.; Temp, J.; Seitz, V.; Kloner, M.; Negrete, R.; Rodriguez-Gaztelumendi, A.; Weber, M.; Machelska, H.; Stein, C. 2019: PK a of opioid ligands as a discriminating factor for side effects. Scientific Reports 9(1): 19344
Hopmann, R.F.; Brugnoni, G.P. 1973: PK of thiamine C(2)H. Nature: new Biology 246(153): 157-158
Pereira, R.W.; Ramabhadran, R.O. 2020: PK-Yay: a Black-Box Method Using Density Functional Theory and Implicit Solvation Models to Compute Aqueous pKa Values of Weak and Strong Acids. Journal of Physical Chemistry. a 124(43): 9061-9074
Lin, C-Hsin.; Chiu, C-Chiang.; Huang, C-Hsien.; Yang, H-Ting.; Lane, H-Yuan. 2019: PLG72 levels increase in early phase of Alzheimer's disease but decrease in late phase. Scientific Reports 9(1): 13221
O'Shea, J.P.; Chou, M.F.; Quader, S.A.; Ryan, J.K.; Church, G.M.; Schwartz, D. 2013: PLogo: a probabilistic approach to visualizing sequence motifs. Nature Methods 10(12): 1211-1212
Bruno, C.A.; O'Brien, C.; Bryant, S.; Mejaes, J.I.; Estrin, D.J.; Pizzano, C.; Barker, D.J. 2021: PMAT: An open-source software suite for the analysis of fiber photometry data. Pharmacology Biochemistry and Behavior 201: 173093
Li, J.; Song, J.; Kang, L.; Huang, L.; Zhou, S.; Hu, L.; Zheng, J.; Li, C.; Zhang, X.; He, X.; Zhao, D.; Bu, Z.; Weng, C. 2021: PMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type i IFN production. Plos Pathogens 17(7): E1009733
Mombeni, M.; Arjmand, S.; Siadat, S.O.R.; Alizadeh, H.; Abbasi, A. 2020: PMOX: a new powerful promoter for recombinant protein production in yeast Pichia pastoris. Enzyme and Microbial Technology 139: 109582
Adema, G.J.; Bakker, A.B.; de Boer, A.J.; Hohenstein, P.; Figdor, C.G. 1996: PMel17 is recognised by monoclonal antibodies NKI-beteb, HMB-45 and HMB-50 and by anti-melanoma CTL. British Journal of Cancer 73(9): 1044-1048
Yang, H.; Al-Hurani, M.F.; Xu, J.; Fan, L.; Schmid, R.A.; Zhao, H.; Yao, F. 2021: PN1 but not pN0/N2 predicts survival benefits of prophylactic cranial irradiation in small-cell lung cancer patients after surgery. Annals of Translational Medicine 9(7): 562
Wang, F.; Qiao, H-Huan.; Xu, R-Gang.; Sun, J.; Zhu, R.; Mao, D.; Ni, J-Quan. 2019: PNP Transgenic RNAi System Manual in Drosophila. Bio-Protocol 9(3):E3158
Comline, R.S.; Silver, M. 1968: PO2 levels in the placental circulation of the mare and ewe. Nature 217(5123): 76-77
Edge, N.D. 1967: PPy: a measure of potentiating activity. Nature 216(5119): 1014-1015
Ning, Q.; Deng, A.; Zou, T.; Zhao, X. 2021: PQLyCar: Peptide-based dynamic query-driven sample rescaling strategy for identifying carboxylation sites combined with KNN and SVM. Analytical Biochemistry 633: 114386
Jones, G.N.; Rooney, C.; Griffin, N.; Roudier, M.; Young, L.A.; Garcia-Trinidad, A.; Hughes, G.D.; Whiteaker, J.R.; Wilson, Z.; Odedra, R.; Zhao, L.; Ivey, R.G.; Howat, W.J.; Harrington, E.A.; Barrett, J.Carl.; Ramos-Montoya, A.; Lau, A.; Paulovich, A.G.; Cadogan, E.B.; Pierce, A.J. 2018: PRAD50: a novel and clinically applicable pharmacodynamic biomarker of both ATM and ATR inhibition identified using mass spectrometry and immunohistochemistry. British Journal of Cancer 119(10): 1233-1243
Jiang, H.; Karnezis, A.N.; Tao, M.; Guida, P.M.; Zhu, L. 2000: PRB and p107 have distinct effects when expressed in pRB-deficient tumor cells at physiologically relevant levels. Oncogene 19(34): 3878-3887
Zhu, X.; Pattenden, S.; Bremner, R. 1999: PRB is required for interferon-gamma-induction of the MHC class II abeta gene. Oncogene 18(35): 4940-4947
Chew, Y.P.; Ellis, M.; Wilkie, S.; Mittnacht, S. 1998: PRB phosphorylation mutants reveal role of pRB in regulating S phase completion by a mechanism independent of E2F. Oncogene 17(17): 2177-2186
Russo, G.; Claudio, P.Paolo.; Fu, Y.; Stiegler, P.; Yu, Z.; Macaluso, M.; Giordano, A. 2003: PRB2/p130 target genes in non-small lung cancer cells identified by microarray analysis. Oncogene 22(44): 6959-6969
Lloyd, T.E.; Bellen, H.J. 2001: PRIMing synaptic vesicles for fusion. Nature Neuroscience 4(10): 965-966
Panigone, S.; Debernardi, S.; Taya, Y.; Fontanella, E.; Airoldi, R.; Delia, D. 2000: PRb and Cdk regulation by N-(4-hydroxyphenyl)retinamide. Oncogene 19(35): 4035-4041
Rampalli, A.M.; Gao, C.Y.; Chauthaiwale, V.M.; Zelenka, P.S. 1998: PRb and p107 regulate E2F activity during lens fiber cell differentiation. Oncogene 16(3): 399-408
Kasten, M.M.; Giordano, A. 1998: PRb and the cdks in apoptosis and the cell cycle. Cell Death and Differentiation 5(2): 132-140
Lu, Z.; Marcelin, G.; Bauzon, F.; Wang, H.; Fu, H.; Dun, S.Le.; Zhao, H.; Li, X.; Jo, Y-Hwan.; Wardlaw, S.; Dun, N.; Chua, S.; Zhu, L. 2013: PRb is an obesity suppressor in hypothalamus and high-fat diet inhibits pRb in this location. EMBO Journal 32(6): 844-857
Bertin-Ciftci, J.; Barré, B.; Le Pen, J.; Maillet, L.; Couriaud, C.; Juin, P.; Braun, F. 2013: PRb/E2F-1-mediated caspase-dependent induction of Noxa amplifies the apoptotic effects of the Bcl-2/Bcl-xL inhibitor ABT-737. Cell Death and Differentiation 20(5): 755-764
Pucci, B.; Claudio, P.Paolo.; Masciullo, V.; Bellincampi, L.; Terrinoni, A.; Khalili, K.; Melino, G.; Giordano, A. 2002: PRb2/p130 promotes radiation-induced cell death in the glioblastoma cell line HJC12 by p73 upregulation and Bcl-2 downregulation. Oncogene 21(38): 5897-5905
Macaluso, M.; Cinti, C.; Russo, G.; Russo, A.; Giordano, A. 2003: PRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer. Oncogene 22(23): 3511-3517
De Falco, G.; Giordano, A. 2006: PRb2/p130: a new candidate for retinoblastoma tumor formation. Oncogene 25(38): 5333-5340
De Falco, G.; Comes, F.; Simone, C. 2006: PRb: master of differentiation. Coupling irreversible cell cycle withdrawal with induction of muscle-specific transcription. Oncogene 25(38): 5244-5249
Spyratos, F.; Andrieu, C.; Hacène, K.; Chambon, P.; Rio, M.C. 1994: PS2 and response to adjuvant hormone therapy in primary breast cancer. British Journal of Cancer 69(2): 394-397
Thompson, A.M.; Hawkins, R.A.; Elton, R.A.; Steel, C.M.; Chetty, U.; Carter, D.C. 1993: PS2 is an independent factor of good prognosis in primary breast cancer. British Journal of Cancer 68(1): 93-96
Soubeyran, I.; Quénel, N.; Coindre, J.M.; Bonichon, F.; Durand, M.; Wafflart, J.; Mauriac, L. 1996: PS2 protein: a marker improving prediction of response to neoadjuvant tamoxifen in post-menopausal breast cancer patients. British Journal of Cancer 74(7): 1120-1125
Xu, X.; Ng, B.; Sim, B.; Radulescu, C.I.; Yusof, N.Amirah.Binte.Mohammad.; Goh, W.Ing.; Lin, S.; Lim, J.Soon.Yew.; Cha, Y.; Kusko, R.; Kay, C.; Ratovitski, T.; Ross, C.; Hayden, M.R.; Wright, G.; Pouladi, M.A. 2020: PS421 huntingtin modulates mitochondrial phenotypes and confers neuroprotection in an HD hiPSC model. Cell Death and Disease 11(9): 809
An, J.; Ponthier, C.M.; Sack, R.; Seebacher, J.; Stadler, M.B.; Donovan, K.A.; Fischer, E.S. 2017: PSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4 CRBN ubiquitin ligase. Nature Communications 8: 15398
Woo, C.G.; Son, S.-M.; Lim, Y.H.; Lee, D.; Park, J.-J.; Kim, E.-G.; Shin, E.-Y.; Lee, O.-J. 2022: PSlugS158 immunohistochemistry is a novel promising mitotic marker for FFPE samples: a pilot study. Virchows Archiv: An International Journal of Pathology 480(2): 449-457
Langner, C.; Hutterer, G.; Chromecki, T.; Winkelmayer, I.; Rehak, P.; Zigeuner, R. 2006: PT classification, grade, and vascular invasion as prognostic indicators in urothelial carcinoma of the upper urinary tract. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology Inc 19(2): 272-279
Sano, T.; Kato, M.; Sassa, N.; Sadachi, R.; Hirakawa, A.; Kamihira, O.; Hirabayashi, T.; Nishikimi, T.; Katsuno, S.; Kimura, T.; Hattori, R.; Gotoh, M.; Tsuzuki, T. 2021: PT3 subclassification of renal pelvic cancer considering the tumor location improves the patients' prognostic accuracy. Virchows Archiv: An International Journal of Pathology 478(6): 1089-1097
Naskar, S.; Wan, H.; Kemenes, Görgy. 2014: PT305-CaMKII stabilizes a learning-induced increase in AMPA receptors for ongoing memory consolidation after classical conditioning. Nature Communications 5: 3967
Bolla, M.; Collette, L. 2009: PT3N0M0 prostate cancer: a plea for adjuvant radiation. Nature Reviews. Urology 6(8): 410-412
Benedyk, T.H.; Muenzner, J.; Connor, V.; Han, Y.; Brown, K.; Wijesinghe, K.J.; Zhuang, Y.; Colaco, S.; Stoll, G.A.; Tutt, O.S.; Svobodova, S.; Svergun, D.I.; Bryant, N.A.; Deane, J.E.; Firth, A.E.; Jeffries, C.M.; Crump, C.M.; Graham, S.C. 2021: PUL21 is a viral phosphatase adaptor that promotes herpes simplex virus replication and spread. Plos Pathogens 17(8): E1009824
Muradov, J.H.; Finnen, R.ée.L.; Gulak, M.A.; Hay, T.J.M.; Banfield, B.W. 2021: PUL21 regulation of pUs3 kinase activity influences the nature of nuclear envelope deformation by the HSV-2 nuclear egress complex. Plos Pathogens 17(8): E1009679
Patel, S.; Guerenne, L.; Gorombei, P.; Omidvar, N.; Schlageter, M-H.; Alex, A.A.; Ganesan, S.; West, R.; Adès, L.; Mathews, V.; Krief, P.; Pla, M.; Fenaux, P.; Chomienne, C.; Padua, R.A. 2015: PVAX14DNA-mediated add-on immunotherapy combined with arsenic trioxide and all-trans retinoic acid targeted therapy effectively increases the survival of acute promyelocytic leukemia mice. Blood Cancer Journal 5: E374
Thoma, C.R.; Frew, I.J.; Hoerner, C.R.; Montani, M.; Moch, H.; Krek, W. 2007: PVHL and GSK3beta are components of a primary cilium-maintenance signalling network. Nature Cell Biology 9(5): 588-595
Frew, I.J.; Thoma, C.R.; Georgiev, S.; Minola, A.; Hitz, M.; Montani, M.; Moch, H.; Krek, W. 2008: PVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation. EMBO Journal 27(12): 1747-1757
Hu, L.; Wu, H.; Jiang, T.; Kuang, M.; Liu, B.; Guo, X.; He, D.; Chen, M.; Gu, J.; Gu, J.; Chang, L.; Feng, M.; Ruan, Y. 2021: PVHL promotes lysosomal degradation of YAP in lung adenocarcinoma. Cellular Signalling 83: 110002
Sevilla-Montero, J.; Bienes-Martínez, R.; Labrousse-Arias, D.; Fuertes-Yebra, E.; Ordóñez, Ángel.; Calzada, Mía.J. 2020: PVHL-mediated regulation of the anti-angiogenic protein thrombospondin-1 decreases migration of Clear Cell Renal Carcinoma Cell Lines. Scientific Reports 10(1): 1175
Roa, I.ñi.; Torralba, A.; Díaz de Lezcano, I.; Martínez-Moneo, E. 2022: Paediatric gastrointestinal stromal tumour: An infrequent case of iron deficiency anaemia in an adolescent. Digestive and Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 54(1): 140-141
Bazin, A.; Gautreau, G.; Médigue, C.; Vallenet, D.; Calteau, A. 2020: PanRGP: a pangenome-based method to predict genomic islands and explore their diversity. Bioinformatics 36(Suppl_2): I651-I658
Brunner, E.; Peter, O.; Schweizer, L.; Basler, K. 1997: Pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385(6619): 829-833
Graham, C.J. 2021: Parkrun - more than a run in the park. Journal of the Royal College of Physicians of Edinburgh 51(3): 310-317
Stoffel, M.A.; Nakagawa, S.; Schielzeth, H. 2021: PartR2: partitioning R2 in generalized linear mixed models. Peerj 9: E11414
Helmus, R.; Ter Laak, T.L.; van Wezel, A.P.; de Voogt, P.; Schymanski, E.L. 2021: PatRoon: open source software platform for environmental mass spectrometry based non-target screening. Journal of Cheminformatics 13(1): 1
Velinder, M.; Lee, D.; Marth, G. 2020: Ped_draw: pedigree drawing with ease. Bmc Bioinformatics 21(1): 569
Serizay, J.; Ahringer, J. 2021: PeriodicDNA: an R/Bioconductor package to investigate k-mer periodicity in DNA. F1000research 10: 141
Mollerstrom, J. 1948: Periodicity of the hepatic function within 24 hours and the intermediate metabolism; practical applications concerning the pathogenesis of diabetes and its treatment. La Semaine des Hopitaux: Organe Fonde Par l'Association d'Enseignement Medical des Hopitaux de Paris 24(52): 1693-1695
Byun, J.; Jong, J.A.; Gangat, A.; Flowers, T.; Gazo, A.; Shah, I. 2020: PhactMi Benchmarking Survey on Content Development and Inquiry Management. Therapeutic Innovation and Regulatory Science 54(6): 1263-1268
Yin, J.; Du, Y.; Qin, R.; Shen, S.; Mandrekar, S. 2021: Phase1RMD: An R package for repeated measures dose-finding designs with novel toxicity and efficacy endpoints. Plos one 16(9): E0256391
De Maio, N.; Boulton, W.; Weilguny, L.; Walker, C.R.; Turakhia, Y.; Corbett-Detig, R.; Goldman, N. 2021: PhastSim: efficient simulation of sequence evolution for pandemic-scale datasets. Biorxiv: the Preprint Server for Biology 2021
Ceriani, R.; Calfún, C.; Whitlock, K.E. 2021: Phoenixin(smim20), a gene coding for a novel reproductive ligand, is expressed in the brain of adult zebrafish. Gene Expression Patterns: Gep 39: 119164
Shamsaei, B.; Chojnacki, S.; Pilarczyk, M.; Najafabadi, M.; Niu, W.; Chen, C.; Ross, K.; Matlock, A.; Muhlich, J.; Chutipongtanate, S.; Zheng, J.; Turner, J.; Vidović, D.ši.; Jaffe, J.; MacCoss, M.; Wu, C.; Pillai, A.; Ma'ayan, A.; Schürer, S.; Kouril, M.; Medvedovic, M.; Meller, J. 2020: PiNET: a versatile web platform for downstream analysis and visualization of proteomics data. Nucleic Acids Research 48(W1): W85-W93
Zhang, L.; Meng, X.; Li, D.; Han, X. 2020: PiR-001773 and piR-017184 promote prostate cancer progression by interacting with PCDH9. Cellular Signalling 76: 109780
Qi, T.; Cao, H.; Sun, H.; Feng, H.; Li, N.; Wang, C.; Wang, L. 2020: PiR-19166 inhibits migration and metastasis through CTTN/MMPs pathway in prostate carcinoma. Aging 12(18): 18209-18220
Liu, Y.; Dong, Y.; He, X.; Gong, A.; Gao, J.; Hao, X.; Wang, S.; Fan, Y.; Wang, Z.; Li, M.; Xu, W. 2021: PiR-hsa-211106 Inhibits the Progression of Lung Adenocarcinoma Through Pyruvate Carboxylase and Enhances Chemotherapy Sensitivity. Frontiers in Oncology 11: 651915
Saint-Leandre, B.; Capy, P.; Hua-Van, A.; Filée, J. 2020: PiRNA and Transposon Dynamics in Drosophila: a Female Story. Genome Biology and Evolution 12(6): 931-947
Beyret, E.; Liu, N.; Lin, H. 2012: PiRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism. Cell Research 22(10): 1429-1439
Onishi, R.; Yamanaka, S.; Siomi, M.C. 2021: PiRNA- and siRNA-mediated transcriptional repression in Drosophila, mice, and yeast: new insights and biodiversity. EMBO reports 22(10): e53062
Li, B.; Hong, J.; Hong, M.; Wang, Y.; Yu, T.; Zang, S.; Wu, Q. 2019: PiRNA-823 delivered by multiple myeloma-derived extracellular vesicles promoted tumorigenesis through re-educating endothelial cells in the tumor environment. Oncogene 38(26): 5227-5238
Barreñada, O.; Larriba, E.; Brieño-Enriquez, M.A.; Mazo, J.ús.D. 2021: PiRNA-IPdb: a PIWI-bound pi RNAs database to mining NGS sncRNA data and beyond. Bmc Genomics 22(1): 765
Li, F.; Yuan, P.; Rao, M.; Jin, C-Hui.; Tang, W.; Rong, Y-Fei.; Hu, Y-Ping.; Zhang, F.; Wei, T.; Yin, Q.; Liang, T.; Wu, L.; Li, J.; Li, D.; Liu, Y.; Lou, W.; Zhao, S.; Liu, M-Fang. 2020: PiRNA-independent function of PIWIL1 as a co-activator for anaphase promoting complex/cyclosome to drive pancreatic cancer metastasis. Nature Cell Biology 22(4): 425-438
Satoh, T.; Iitsuka, T.; Shiraishi, A.; Hozumi, A.; Satake, H.; Sasakura, Y. 2018: PiRNA-like small RNAs are responsible for the maternal-specific knockdown in the ascidian Ciona intestinalis Type A. Scientific Reports 8(1): 5869
Teixeira, F.Karam.; Okuniewska, M.; Malone, C.D.; Coux, Rémi-Xavier.; Rio, D.C.; Lehmann, R. 2017: PiRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 552(7684): 268-272
Yao, F.; Ma, L. 2020: PiRNA-unbound PIWIL1 promotes metastasis. Nature Cell Biology 22(4): 359-360
Dufourt, Jérémy.; Bontonou, Génaëlle.; Chartier, A.; Jahan, C.; Meunier, A-Cécile.; Pierson, Séphanie.; Harrison, P.F.; Papin, C.; Beilharz, T.H.; Simonelig, M. 2017: PiRNAs and Aubergine cooperate with Wispy poly(A) polymerase to stabilize mRNAs in the germ plasm. Nature Communications 8(1): 1305
Ow, M.C.; Hall, S.E. 2021: PiRNAs and endo-siRNAs: Small molecules with large roles in the nervous system. Neurochemistry International 148: 105086
Clyde, D. 2019: PiRNAs make sense of retroviral invaders. Nature Reviews. Genetics 20(12): 704
Simonelig, M. 2014: PiRNAs, master regulators of gene expression. Cell Research 24(7): 779-780
Eslava-Avilés, E.; Arenas-Huertero, F. 2021: PiRNAs: nature, biogenesis, regulation, and their potential clinical utility. Boletin Medico del Hospital Infantil de Mexico 78(5): 432-442
Kim, S.W.; Lee, J.H.; Han, J.S.; Shin, S.P.; Park, T.S. 2021: PiggyBac Transposition and the Expression of Human Cystatin C in Transgenic Chickens. Animals: An Open Access Journal from Mdpi 11(6)
Mitra, R.; Fain-Thornton, J.; Craig, N.L. 2008: PiggyBac can bypass DNA synthesis during cut and paste transposition. EMBO Journal 27(7): 1097-1109
Nakanishi, H.; Higuchi, Y.; Kawakami, S.; Yamashita, F.; Hashida, M. 2010: PiggyBac transposon-mediated long-term gene expression in mice. Molecular Therapy: the Journal of the American Society of Gene Therapy 18(4): 707-714
Singla, M.; Ghosh, D.; Shukla, K.K. 2021: Pin ¯ -TSVM: a Robust Transductive Support Vector Machine and its Application to the Detection of COVID-19 Infected Patients. Neural Processing Letters 53(6): 3981-4010
Germain, P.-L.; Sonrel, A.; Robinson, M.D. 2020: PipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools. Genome Biology 21(1): 227
Boritsch, E.C.; Frigui, W.; Cascioferro, A.; Malaga, W.; Etienne, G.; Laval, Fçoise.; Pawlik, A.; Le Chevalier, F.; Orgeur, M.; Ma, L.; Bouchier, C.; Stinear, T.P.; Supply, P.; Majlessi, L.; Daffé, M.; Guilhot, C.; Brosch, R. 2016: Pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nature Microbiology 1: 15019
Chen, W.; Yao, C.; Guo, Y.; Wang, Y.; Xue, Z. 2020: PmTM-align: scalable pairwise and multiple structure alignment with Apache Spark and OpenMP. Bmc Bioinformatics 21(1): 426
Duc Chinh, N.; Haneul, Y.; Minh Hieu, N.; Manh Hung, N.; Duc Quang, N.; Kim, C.; Kim, D. 2021: Pn-Heterojunction of the SWCNT/ZnO nanocomposite for temperature dependent reaction with hydrogen. Journal of Colloid and Interface Science 584: 582-591
Zhang, D.; Yang, Y.; Liang, C.; Liu, J.; Wang, H.; Liu, S.; Yan, Q. 2019: PoFUT1 promotes uterine angiogenesis and vascular remodeling via enhancing the O-fucosylation on uPA. Cell Death and Disease 10(10): 775
Zhang, B-Cun.; Zhou, Z-Jun.; Sun, L. 2016: Pol-miR-731, a teleost miRNA upregulated by megalocytivirus, negatively regulates virus-induced type I interferon response, apoptosis, and cell cycle arrest. Scientific Reports 6: 28354
Taira, Y.; Wada, H.; Hayashi, S.; Kageyama, Y. 2021: Polished rice mediates ecdysone-dependent control of Drosophila embryonic organogenesis. Genes to Cells: Devoted to Molecular and Cellular Mechanisms 26(5): 269-281
Shukla, A.; Yan, J.; Pagano, D.J.; Dodson, A.E.; Fei, Y.; Gorham, J.; Seidman, J.G.; Wickens, M.; Kennedy, S. 2020: Poly(UG)-tailed RNAs in genome protection and epigenetic inheritance. Nature 582(7811): 283-288
Clark, L.V.; Lipka, A.E.; Sacks, E.J. 2019: PolyRAD: Genotype Calling with Uncertainty from Sequencing Data in Polyploids and Diploids. G3 9(3): 663-673
Brandt, C.; Krautwurst, S.; Spott, R.; Lohde, M.; Jundzill, M.; Marquet, M.; Hölzer, M. 2021: PoreCov-An Easy to Use, Fast, and Robust Workflow for SARS-CoV-2 Genome Reconstruction via Nanopore Sequencing. Frontiers in Genetics 12: 711437
Hoffarth, S.; Zitzer, A.; Wiewrodt, R.; Hähnel, P.S.; Beyer, V.; Kreft, A.; Biesterfeld, S.; Schuler, M. 2008: Pp32/PHAPI determines the apoptosis response of non-small-cell lung cancer. Cell Death and Differentiation 15(1): 161-170
Marx, M.; Dorsch, O. 1997: Pp60c-src is required for the induction of a quiescent mesangial cell phenotype. Kidney International 51(1): 110-118
Wu, Q.; Zhang, C.; Zhang, K.; Chen, Q.; Wu, S.; Huang, H.; Huang, T.; Zhang, N.; Wang, X.; Li, W.; Liu, Y.; Zhang, J. 2020: PpGalNAc-T4-catalyzed O-Glycosylation of TGF-β type Ⅱ receptor regulates breast cancer cells metastasis potential. Journal of Biological Chemistry 2020: 100119
Wang, B.; Grant, R.A.; Laub, M.T. 2020: PpGpp Coordinates Nucleotide and Amino-Acid Synthesis in E. coli During Starvation. Molecular Cell 80(1): 29-42.E10
Ito, D.; Kawamura, H.; Oikawa, A.; Ihara, Y.; Shibata, T.; Nakamura, N.; Asano, T.; Kawabata, S-Ichiro.; Suzuki, T.; Masuda, S. 2020: PpGpp functions as an alarmone in metazoa. Communications Biology 3(1): 671
Cabrer-Panes, J.D.; Fernández-Coll, L.ç; Fernández-Vázquez, J.; Gaviria-Cantin, T.C.; El Mouali, Y.; Åberg, A.; Balsalobre, C. 2020: PpGpp mediates the growth phase-dependent regulation of agn43, a phase variable gene, by stimulating its promoter activity. Environmental Microbiology Reports 12(4): 444-453
Kim, K.; Islam, M.; Jung, H-Won.; Lim, D.; Kim, K.; Lee, S-Gwon.; Park, C.; Lee, J.Chul.; Shin, M. 2021: PpGpp signaling plays a critical role in virulence of Acinetobacter baumannii. Virulence 12(1): 2122-2132
Du Toit, A. 2018: PpGpp triggers the switch. Nature Reviews. Microbiology 16(8): 454
Dalebroux, Z.D.; Swanson, M.S. 2012: PpGpp: magic beyond RNA polymerase. Nature Reviews. Microbiology 10(3): 203-212
Mező, G.áb.; Tripodi Angelo Pierluigi, A.; Ranđelovič, I.; Enyedi, N.ór.K.; Biri-Kovács, B.át.; Tóvári, J.óz. 2021: Application of Asn-Gly-Arg sequence based cyclic peptides for targeted tumor therapy. Magyar Onkologia 65(2): 113-120
Rinaldi, L.; Delle Donne, R.; Sepe, M.; Porpora, M.; Garbi, C.; Chiuso, F.; Gallo, A.; Parisi, S.; Russo, L.; Bachmann, V.; Huber, R.G.; Stefan, E.; Russo, T.; Feliciello, A. 2016: Praja2 regulates KSR1 stability and mitogenic signaling. Cell Death and Disease 7: E2230
Pastore, B.; Hertz, H.L.; Price, I.F.; Tang, W. 2021: Pre-piRNA trimming and 2'-O-methylation protect pi RNAs from 3' tailing and degradation in C. elegans. Cell Reports 36(9): 109640
Islam, M.K.B.; Rahman, J.; Hasan, M.A.M.; Ahmad, S. 2021: PredForm-Site: Formylation site prediction by incorporating multiple features and resolving data imbalance. Computational Biology and Chemistry 94: 107553
Liang, R.; An, J.; Zheng, Y.; Li, J.; Wang, Y.; Jia, Y.; Zhang, J.; Lu, Q. 2021: Predicting and improving the probability of live birth for women undergoing frozen-thawed embryo transfer: a data-driven estimation and simulation model. Computer Methods and Programs in Biomedicine 198: 105780
Quinn, T.P.; Richardson, M.F.; Lovell, D.; Crowley, T.M. 2017: Propr: An R-package for Identifying Proportionally Abundant Features Using Compositional Data Analysis. Scientific Reports 7(1): 16252
Mwai, K.; Kibinge, N.; Tuju, J.; Kamuyu, G.; Kimathi, R.; Mburu, J.; Chepsat, E.; Nyamako, L.; Chege, T.; Nkumama, I.; Kinyanjui, S.; Musenge, E.; Osier, F. 2021: ProtGear: a protein microarray data pre-processing suite. Computational and Structural Biotechnology Journal 19: 2518-2525
Wurz, A.I.; O'Bryant, C.T.; Hughes, R.M. 2021: ProtaTETHER: a method for the incorporation of linkers in biomacromolecules. Methods in Enzymology 647: 83-106
Graw, S.; Tang, J.; Zafar, M.K.; Byrd, A.K.; Bolden, C.; Peterson, E.C.; Byrum, S.D. 2020: ProteiNorm - a User-Friendly Tool for Normalization and Analysis of TMT and Label-Free Protein Quantification. Acs Omega 5(40): 25625-25633
Boon, K-Loong.; Grainger, R.J.; Ehsani, P.; Barrass, J.David.; Auchynnikava, T.; Inglehearn, C.F.; Beggs, J.D. 2007: Prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nature Structural and Molecular Biology 14(11): 1077-1083
Morden, C.W.; Golden, S.S. 1989: PsbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337(6205): 382-385
Strittmatter, L.M.; Capitanchik, C.; Newman, A.J.; Hallegger, M.; Norman, C.M.; Fica, S.M.; Oubridge, C.; Luscombe, N.M.; Ule, J.; Nagai, K. 2021: PsiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Nature Communications 12(1): 1488
Klein, J.; Zaia, J. 2019: Psims - A Declarative Writer for mzML and mzIdentML for Python. Molecular and Cellular Proteomics: Mcp 18(3): 571-575
Ahmed, F.; Senthil-Kumar, M.; Dai, X.; Ramu, V.S.; Lee, S.; Mysore, K.S.; Zhao, P.X. 2020: PssRNAit: a Web Server for Designing Effective and Specific Plant si RNAs with Genome-Wide Off-Target Assessment. Plant Physiology 184(1): 65-81
Ahmed, F.; Senthil-Kumar, M.; Dai, X.; Ramu, V.S.; Lee, S.; Mysore, K.S.; Zhao, P.Xuechun. 2020: PssRNAit: A Web Server for Designing Effective and Specific Plant si RNAs with Genome-Wide Off-Target Assessment. Plant Physiology 184(1): 65-81
Hayes, M.; Gao, X.; Yu, L.X.; Paria, N.; Henkelman, R.Mark.; Wise, C.A.; Ciruna, B. 2014: Ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nature Communications 5: 4777
Dormatey, R.; Sun, C.; Ali, K.; Fiaz, S.; Xu, D.; Calderón-Urrea, A.; Bi, Z.; Zhang, J.; Bai, J. 2021: PtxD/Phi as alternative selectable marker system for genetic transformation for bio-safety concerns: a review. Peerj 9: E11809
Wang, X.; He, S.; Li, J.; Wang, J.; Wang, C.; Wang, M.; He, D.; Lv, X.; Zhong, Q.; Wang, H.; Wang, Z. 2020: PulseTD: RNA life cycle dynamics analysis based on pulse model of 4sU-seq time course sequencing data. Peerj 8: E9371
Savitzky, B.H.; Zeltmann, S.E.; Hughes, L.A.; Brown, H.G.; Zhao, S.; Pelz, P.M.; Pekin, T.C.; Barnard, E.S.; Donohue, J.; Rangel DaCosta, L.; Kennedy, E.; Xie, Y.; Janish, M.T.; Schneider, M.M.; Herring, P.; Gopal, C.; Anapolsky, A.; Dhall, R.; Bustillo, K.C.; Ercius, P.; Scott, M.C.; Ciston, J.; Minor, A.M.; Ophus, C. 2021: Py4DSTEM: a Software Package for Four-Dimensional Scanning Transmission Electron Microscopy Data Analysis. Microscopy and Microanalysis: the Official Journal of Microscopy Society of America Microbeam Analysis Society Microscopical Society of Canada 27(4): 712-743
Hammad, G.ég.; Reyt, M.; Beliy, N.; Baillet, M.; Deantoni, M.; Lesoinne, A.; Muto, V.; Schmidt, C. 2021: PyActigraphy: Open-source python package for actigraphy data visualization and analysis. Plos Computational Biology 17(10): E1009514
Zhang, Y.; Shang, Q.; Zhang, G. 2021: PyDRMetrics - a Python toolkit for dimensionality reduction quality assessment. Heliyon 7(2): E06199
Odinokov, A.V.; Dubinets, N.O.; Bagaturyants, A.A. 2018: PyEFP: Automatic decomposition of the complex molecular systems into rigid polarizable fragments. Journal of Computational Chemistry 39(13): 807-814
Hemmerich, J.; Tenhaef, N.; Wiechert, W.; Noack, S. 2021: PyFOOMB: Python framework for object oriented modeling of bioprocesses. Engineering in Life Sciences 21(3-4): 242-257
Luo, Z.-H.; Shi, M.-W.; Yang, Z.; Zhang, H.-Y.; Chen, Z.-X. 2020: PyMeSHSim: an integrative python package for biomedical named entity recognition, normalization, and comparison of MeSH terms. Bmc Bioinformatics 21(1): 252
Akam, T.; Walton, M.E. 2019: PyPhotometry: Open source Python based hardware and software for fiber photometry data acquisition. Scientific Reports 9(1): 3521
Sladek, V.; Yamamoto, Y.; Harada, R.; Shoji, M.; Shigeta, Y.; Sladek, V. 2021: PyProGA-A PyMOL plugin for protein residue network analysis. Plos one 16(7): E0255167
Bauer, A.; Prechová, M.; Fischer, L.; Thievessen, I.; Gregor, M.; Fabry, B. 2021: PyTFM: a tool for traction force and monolayer stress microscopy. Plos Computational Biology 17(6): E1008364
Andresen, K.S. 1949: Pyloric stenosis; some cases were operatively treated in the period 1931-41. Ugeskrift for Laeger 111(31): 854
Jungo, A.; Scheidegger, O.; Reyes, M.; Balsiger, F. 2021: Pymia: a Python package for data handling and evaluation in deep learning-based medical image analysis. Computer Methods and Programs in Biomedicine 198: 105796
Singh, U.; Li, J.; Seetharam, A.; Wurtele, E.S. 2021: Pyrpipe: a Python package for RNA-Seq workflows. Nar Genomics and Bioinformatics 3(2): Lqab 049
Pieniak, M.; Oleszkiewicz, A.; Klockow, M.; Yoshino, A.; Haehner, A.; Hummel, T. 2022: Q-Powders: a quick test for screening retronasal olfactory disorders with tasteless powders. European Archives of Oto-Rhino-Laryngology: Official Journal of the European Federation of Oto-Rhino-Laryngological Societies: Affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery 279(2): 779-784
Crossley, M.P.; Bocek, M.J.; Hamperl, S.; Swigut, T.; Cimprich, K.A. 2020: QDRIP: a method to quantitatively assess RNA-DNA hybrid formation genome-wide. Nucleic Acids Research 48(14): E84
Zhu, Y.; Biernacka, A.; Pardo, B.; Dojer, N.; Forey, R.; Skrzypczak, M.; Fongang, B.; Nde, J.; Yousefi, R.; Pasero, P.; Ginalski, K.; Rowicka, M. 2019: QDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing. Nature Communications 10(1): 2313
Gorantla, V.R.; Bond, V.; Dorsey, J.; Tedesco, S.; Kaur, T.; Simpson, M.; Pemminati, S.; Millis, R.M. 2019: QEEG Measures of Attentional and Memory Network Functions in Medical Students: Novel Targets for Pharmacopuncture to Improve Cognition and Academic Performance. Journal of Pharmacopuncture 22(3): 166-170
Luu, H.M.; Kim, D.-H.; Kim, J.-W.; Choi, S.-H.; Park, S.-H. 2021: QMTNet: Accelerated quantitative magnetization transfer imaging with artificial neural networks. Magnetic Resonance in Medicine 85(1): 298-308
Luh, L.M.; Das, I.; Bertolotti, A. 2017: QMotor, a set of rules for sensitive, robust and quantitative measurement of motor performance in mice. Nature Protocols 12(7): 1451-1457
Zhang, W.; Deng, S.; Zhao, Y.; Xu, W.; Liu, Q.; Zhang, Y.; Ren, C.; Cheng, Z.; Xu, M.; Liu, B. 2021: QMrdd2, a novel quantitative resistance locus for maize rough dwarf disease. Bmc Plant Biology 21(1): 307
Oliveira, E.S.C.; Pontes, F.áv.L.D.; Acho, L.D.R.; do Rosário, A.S.; da Silva, B.ár.J.ín.P.; de A Bezerra, J.; Campos, F.R.; Lima, E.S.; Machado, M.B. 2021: QNMR quantification of phenolic compounds in dry extract of Myrcia multiflora leaves and its antioxidant, anti-AGE, and enzymatic inhibition activities. Journal of Pharmaceutical and Biomedical Analysis 201: 114109
Witte, A.K.; Mester, P.; Rossmanith, P. 2021: QPCR Validation on the Basis of the Listeria monocytogenes prfA Assay. Methods in Molecular Biology 2220: 41-53
Ma, H.; Bell, K.N.; Loker, R.N. 2021: QPCR and qRT-PCR analysis: Regulatory points to consider when conducting biodistribution and vector shedding studies. Molecular Therapy. Methods and Clinical Development 20: 152-168
Vandersea, M.W.; Kibler, S.R.; Van Sant, S.B.; Tester, P.A.; Sullivan, K.; Eckert, G.; Cammarata, C.; Reece, K.; Scott, G.; Place, A.; Holderied, K.; Hondolero, D.; Litaker, R.W. 2017: QPCR assays for Alexandrium fundyense and A. ostenfeldii (Dinophyceae) identified from Alaskan waters and a review of species-specific Alexandrium molecular assays. Phycologia 56(3): 303-320
Claeys Boúúaert, D.; Van Poucke, M.; De Smet, L.; Verbeke, W.; de Graaf, D.C.; Peelman, L. 2021: QPCR assays with dual-labeled probes for genotyping honey bee variants associated with varroa resistance. Bmc Veterinary Research 17(1): 179
Khoury, S.; Tran, N. 2020: QPCR multiplex detection of microRNA and messenger RNA in a single reaction. Peerj 8: E9004
Krolicka, A.; Gomiero, A.; Baussant, T. 2020: QPCR-based assessment of microfaunal indicators of oil for monitoring benthos around oil and gas platforms. Science of the Total Environment 736: 139527
Barry, D.E.; Veillard, M.; James, C.T.; Brummelhuis, L.; Pila, E.A.; Turnbull, A.; Oploo, A.O.-v.; Han, X.; Hanington, P.C. 2021: QPCR-based environmental monitoring of Myxobolus cerebralis and phylogenetic analysis of its tubificid hosts in Alberta, Canada. Diseases of Aquatic Organisms 145: 119-137
Nicolae, M.; Rajasekaran, S. 2015: QPMS9: an efficient algorithm for quorum Planted Motif Search. Scientific Reports 5: 7813
Asha Devi, S.; Davargaon, R.S.; Subramanyam, M.V.V. 2022: QRT-PCR Analysis of GLUT-4 and Assessment of Trolox as an Effective Antioxidant in Diabetic Cardiomyoblasts. Methods in Molecular Biology 2343: 247-258
Zhang, K.; Zhang, Y.; Wu, W.; Zhan, X.; Anis, G.Bakr.; Rahman, M.Habibur.; Hong, Y.; Riaz, A.; Zhu, A.; Cao, Y.; Sun, L.; Yang, Z.; Yang, Q.; Cao, L.; Cheng, S. 2018: QSE7 is a major quantitative trait locus (QTL) influencing stigma exsertion rate in rice (Oryza sativa L.). Scientific Reports 8(1): 14523
Wagner, T.; Sinning, C.; Haumann, J.; Magnussen, C.; Blankenberg, S.; Reichenspurner, H.; Grahn, H. 2020: QSOFA Score Is Useful to Assess Disease Severity in Patients with Heart Failure in the Setting of a Heart Failure Unit (HFU). Frontiers in Cardiovascular Medicine 7: 574768
Spagnolello, O.; Ceccarelli, G.; Borrazzo, C.; Macrì, A.; Suppa, M.; Baldini, E.; Garramone, A.; Alessandri, F.; Celani, L.; Vullo, F.; Angeletti, S.; Ciccozzi, M.; Mastroianni, C.; Bertazzoni, G.; D'Ettorre, G. 2021: QSOFA as a new community-acquired pneumonia severity score in the emergency setting. Emergency Medicine Journal: Emj 38(12): 906-912
Andrews, J.O.; Conway, W.; Cho, W-K.; Narayanan, A.; Spille, J-H.; Jayanth, N.; Inoue, T.; Mullen, S.; Thaler, J.; Cissé, I.I. 2018: QSR: a quantitative super-resolution analysis tool reveals the cell-cycle dependent organization of RNA Polymerase I in live human cells. Scientific Reports 8(1): 7424
Lee, H-Chi.; Chang, S-Shin.; Choudhary, S.; Aalto, A.P.; Maiti, M.; Bamford, D.H.; Liu, Y. 2009: QiRNA is a new type of small interfering RNA induced by DNA damage. Nature 459(7244): 274-277
Yong, D.; Kobayashi, C.; Da Costa, G.S.; Bessell, M.S.; Chiti, A.; Frebel, A.; Lind, K.; Mackey, A.D.; Nordlander, T.; Asplund, M.; Casey, A.R.; Marino, A.F.; Murphy, S.J.; Schmidt, B.P. 2021: R-Process elements from magnetorotational hypernovae. Nature 595(7866): 223-226
Ahmed, S.Seher.; Schattgen, S.A.; Frakes, A.E.; Sikoglu, E.M.; Su, Q.; Li, J.; Hampton, T.G.; Denninger, A.R.; Kirschner, D.A.; Kaspar, B.; Matalon, R.; Gao, G. 2016: RAAV Gene Therapy in a Canavan's Disease Mouse Model Reveals Immune Impairments and an Extended Pathology Beyond the Central Nervous System. Molecular Therapy: the Journal of the American Society of Gene Therapy 24(6): 1030-1041
Li, J.; Dressman, D.; Tsao, Y.P.; Sakamoto, A.; Hoffman, E.P.; Xiao, X. 1999: RAAV vector-mediated sarcogylcan gene transfer in a hamster model for limb girdle muscular dystrophy. Gene Therapy 6(1): 74-82
Morscheid, Y.P.; Venkatesan, J.K.; Schmitt, G.; Orth, P.; Zurakowski, D.; Speicher-Mentges, S.; Menger, M.D.; Laschke, M.W.; Cucchiarini, M.; Madry, H. 2021: RAAV-Mediated Human FGF-2 Gene Therapy Enhances Osteochondral Repair in a Clinically Relevant Large Animal Model over time in Vivo. American Journal of Sports Medicine 49(4): 958-969
Lange, C.; Madry, H.; Venkatesan, J.K.; Schmitt, G.; Speicher-Mentges, S.; Zurakowski, D.; Menger, M.D.; Laschke, M.W.; Cucchiarini, M. 2021: RAAV-Mediated sox9 Overexpression Improves the Repair of Osteochondral Defects in a Clinically Relevant Large Animal Model over time in Vivo and Reduces Perifocal Osteoarthritic Changes. American Journal of Sports Medicine 49(13): 3696-3707
Cucchiarini, M.; Schetting, S.; Terwilliger, E.F.; Kohn, D.; Madry, H. 2009: RAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and alpha-SMA expression in human meniscal lesions. Gene Therapy 16(11): 1363-1372
Frisch, J.; Rey-Rico, A.; Venkatesan, J.K.; Schmitt, G.; Madry, H.; Cucchiarini, M. 2016: RAAV-mediated overexpression of sox9, TGF-β and IGF-I in minipig bone marrow aspirates to enhance the chondrogenic processes for cartilage repair. Gene Therapy 23(3): 247-255
Valdmanis, P.N.; Lisowski, L.; Kay, M.A. 2012: RAAV-mediated tumorigenesis: still unresolved after an AAV assault. Molecular Therapy: the Journal of the American Society of Gene Therapy 20(11): 2014-2017
Ross, J.A.; Tasfaout, H.; Levy, Y.; Morgan, J.; Cowling, B.S.; Laporte, J.; Zanoteli, E.; Romero, N.B.; Lowe, D.A.; Jungbluth, H.; Lawlor, M.W.; Mack, D.L.; Ochala, J. 2020: RAAV-related therapy fully rescues myonuclear and myofilament function in X-linked myotubular myopathy. Acta Neuropathologica Communications 8(1): 167
Beltran, W.A.; Boye, S.L.; Boye, S.E.; Chiodo, V.A.; Lewin, A.S.; Hauswirth, W.W.; Aguirre, G.D. 2010: RAAV2/5 gene-targeting to rods:dose-dependent efficiency and complications associated with different promoters. Gene Therapy 17(9): 1162-1174
Gregorevic, P.; Allen, J.M.; Minami, E.; Blankinship, M.J.; Haraguchi, M.; Meuse, L.; Finn, E.; Adams, M.E.; Froehner, S.C.; Murry, C.E.; Chamberlain, J.S. 2006: RAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nature Medicine 12(7): 787-789
Ishii, A.; Okada, H.; Hayashita-Kinoh, H.; Shin, J.-H.; Tamaoka, A.; Okada, T.; Takeda, S.'i. 2020: RAAV8 and rAAV9-Mediated Long-Term Muscle Transduction with Tacrolimus (FK506) in Non-Human Primates. Molecular Therapy. Methods and Clinical Development 18: 44-49
Rocca, C.J.; Ur, S.N.; Harrison, F.; Cherqui, S. 2014: RAAV9 combined with renal vein injection is optimal for kidney-targeted gene delivery: conclusion of a comparative study. Gene Therapy 21(6): 618-628
Lian, F.; Ye, Q.; Feng, B.; Cheng, H.; Niu, S.; Fan, N.; Wang, D.; Wang, Z. 2020: RAAV9-UPII-TK-EGFP can precisely transduce a suicide gene and inhibit the growth of bladder tumors. Cancer Biology and Therapy 21(12): 1171-1178
Theil, S.; Rifa, E. 2021: RANOMALY: AmplicoN wOrkflow for Microbial community AnaLYsis. F1000research 10: 7
Hua, H.; Dong, X.; Zhang, Y.; Fang, F.; Zhang, B.; Li, X.; Yu, Q.; Zheng, K.; Yan, C. 2021: RCsHscB derived from Clonorchis sinensis has therapeutic effect on dextran sodium sulfate-induced chronic ulcerative colitis in mice. Nan Fang Yi Ke da Xue Xue Bao 41(5): 664-670
Son, J.; Hannan, K.M.; Poortinga, G.; Hein, N.; Cameron, D.P.; Ganley, A.R.D.; Sheppard, K.E.; Pearson, R.B.; Hannan, R.D.; Sanij, E. 2020: RDNA Chromatin Activity Status as a Biomarker of Sensitivity to the RNA Polymerase i Transcription Inhibitor CX-5461. Frontiers in Cell and Developmental Biology 8: 568
Tao, B.; Lo, L.J.; Peng, J.; He, J. 2020: RDNA subtypes and their transcriptional expression in zebrafish at different developmental stages. Biochemical and Biophysical Research Communications 529(3): 819-825
Kwok, C.Kit.; Marsico, G.; Sahakyan, A.B.; Chambers, V.S.; Balasubramanian, S. 2016: RG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nature Methods 13(10): 841-844
Iyer, M.S.; Wang, F.-M.; Jayapalan, R.R.; Veeramani, S.; Rajangam, I. 2021: RGO based immunosensor amplified using MWCNT and CNF nanocomposite as analytical tool for CA125 detection. Analytical Biochemistry 634: 114393
Vinesh, V.; Ashokkumar, M.; Neppolian, B. 2020: RGO supported self-assembly of 2D nano sheet of (g-C3N4) into rod-like nano structure and its application in sonophotocatalytic degradation of an antibiotic. Ultrasonics Sonochemistry 68: 105218
Kumar, S.; Kaushik, R.D.; Upadhyay, G.K.; Purohit, L.P. 2021: RGO-ZnO nanocomposites as efficient photocatalyst for degradation of 4-BP and DEP using high temperature refluxing method in in-situ condition. Journal of Hazardous Materials 406: 124300
Zhao, Y.; Liang, X.; Hu, X.; Fan, J. 2021: RGO/Bi2WO6 composite as a highly efficient and stable visible-light photocatalyst for norfloxacin degradation in aqueous environment. Journal of Colloid and Interface Science 589: 336-346
Laurenzi, T.; Parravicini, C.; Palazzolo, L.; Guerrini, U.; Gianazza, E.; Calabresi, L.; Eberini, I. 2021: RHDL modeling and the anchoring mechanism of LCAT activation. Journal of Lipid Research 62: 100006
Nagai, T.; Akizawa, T.; Kohjiro, S.; Koiwa, F.; Nabeshima, K.; Niikura, K.; Kino, K.; Kanamori, N.; Kinugasa, E.; Ideura, T. 1996: RHuEPO enhances the production of plasminogen activator inhibitor-1 in cultured endothelial cells. Kidney International 50(1): 102-107
Marsh, J.T.; Brown, W.S.; Wolcott, D.; Carr, C.R.; Harper, R.; Schweitzer, S.V.; Nissenson, A.R. 1991: RHuEPO treatment improves brain and cognitive function of anemic dialysis patients. Kidney International 39(1): 155-163
Hunault-Berger, M.; Tanguy-Schmidt, A.; Rachieru, P.; Lévy, V.; Truchan-Graczyk, M.; Francois, S.; Gardembas-Pain, M.; Dib, M.; Foussard, C.; Piard, N.; Godon, A.; Solal-Celigny, P.; Ifrah, N. 2005: RHuEpo before high-dose therapy allows autologous peripheral stem-cell transplantation without red blood cell transfusion: a pilot study. Bone Marrow Transplantation 35(9): 903-907
Dong, W.; Chen, M.; Wang, J.; Xia, L.; Wang, Q.; Nie, X.; Feng, Y.; Fang, Y. 2021: RHuPH20-facilitated subcutaneous administration of monoclonal antibodies in cancer therapy. ImmunoTherapy 13(1): 79-88
Kaur, G.; Sts, C.; Nimker, C.; Bansal, A. 2015: RIL-22 as an adjuvant enhances the immunogenicity of rGroEL in mice and its protective efficacy against S. Typhi and S. Typhimurium. Cellular and Molecular Immunology 12(1): 96-106
Kaur, G.; Chitradevi; Charu; Bansal, A. 2017: RIL-22 as an adjuvant enhances the immunogenicity of rGroEL in mice and its protective efficacy against S. Typhi and S. Typhimurium. Cellular and Molecular Immunology 14(5): 478
Geerts, M.; Schnaufer, A.; Van den Broeck, F. 2021: RKOMICS: an R package for processing mitochondrial minicircle assemblies in population-scale genome projects. Bmc Bioinformatics 22(1): 468
Kleinbub, J.R.; Ramseyer, F.T. 2020: RMEA: An R package to assess nonverbal synchronization in motion energy analysis time-series. PsychoTherapy Research: Journal of the Society for PsychoTherapy Research 2020: 1-14
Shahjaman, M.; Rahman, M.R.; Islam, T.; Auwul, M.R.; Moni, M.A.; Mollah, M.N.H. 2021: RMisbeta: a robust missing value imputation approach in transcriptomics and metabolomics data. Computers in Biology and Medicine 138: 104911
Li, Q.; Ren, J.; Xian, H.; Yin, C.; Yuan, Y.; Li, Y.; Ji, R.; Chu, C.; Qiao, Z.; Jiao, X. 2020: ROmpF and OMVs as efficient subunit vaccines against Salmonella enterica serovar Enteritidis infections in poultry farms. Vaccine 38(45): 7094-7099
Dong, N.; Spencer, D.M.; Quan, Q.; Le Blanc, J.C.Y.; Feng, J.; Li, M.; Siu, K.W.M.; Chu, I.K. 2020: RPTMDetermine: a Fully Automated Methodology for Endogenous Tyrosine Nitration Validation, Site-Localization, and Beyond. Analytical Chemistry 92(15): 10768-10776
Osterman, I.A.; Dontsova, O.A.; Sergiev, P.V. 2020: RRNA Methylation and Antibiotic Resistance. BIOCHEMISTRY. Biokhimiia 85(11): 1335-1349
Görgülü, Öz.; Duyan, M. 2020: RRT-PCR Results of a Covid-19 Diagnosed Geriatric Patient. Sn Comprehensive Clinical Medicine 2(11): 2423-2426
Marks, J.H.; Kunkel, E.; Salem, J.; Martin, C.; Schoonyoung, H.P.; Agarwal, S. 2020: RSILS: initial clinical experience with single-port robotic (SPr) right colectomy. Techniques in Coloproctology 24(8): 817-822
Yuan, Y.; Gao, X.; Guo, N.; Zhang, H.; Xie, Z.; Jin, M.; Li, B.; Yu, L.; Jing, N. 2007: RSac3, a novel Sac domain phosphoinositide phosphatase, promotes neurite outgrowth in PC12 cells. Cell Research 17(11): 919-932
Ciciani, M.; Cantore, T.; Lauria, M. 2020: RScudo: an R package for classification of molecular profiles using rank-based signatures. Bioinformatics 36(13): 4095-4096
Zhu, D.; Lyu, L.; Shen, P.; Wang, J.; Chen, J.; Sun, X.; Chen, L.; Zhang, L.; Zhou, Q.; Duan, Y. 2018: RSjP40 protein promotes PPARγ expression in LX-2 cells through microRNA-27b. Faseb Journal: Official Publication of the Federation of American Societies for Experimental Biology 32(9): 4798-4803
Farias, A.P.F.óe.d.; Rocha Filho, J.é T.R.; Marchioro, S.B.; Moreira, L.S.; Marques, A.S.; Sá, M.d.C.ção.A.d.; Oliveira, A.A.D.S.; Alcântara, M.E.íl.; Mariutti, R.B.; Arni, R.K.; Trindade, S.C.; Meyer, R. 2020: RSodC is a potential antigen to diagnose Corynebacterium pseudotuberculosis by enzyme-linked immunoassay. Amb Express 10(1): 186
Xie, Y.; Guan, M.; Wang, Z.; Ma, Z.; Wang, H.; Fang, P.; Yin, H. 2021: RTMS Induces Brain Functional and Structural Alternations in Schizophrenia Patient with Auditory Verbal Hallucination. Frontiers in Neuroscience 15: 722894
Croce, P.; Spadone, S.; Zappasodi, F.; Baldassarre, A.; Capotosto, P. 2021: RTMS affects EEG microstates dynamic during evoked activity. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior 138: 302-310
Hansbauer, M.; Wagner, E.; Strube, W.; Röh, A.; Padberg, F.; Keeser, D.; Falkai, P.; Hasan, A. 2020: RTMS and tDCS for the treatment of catatonia: a systematic review. Schizophrenia Research 222: 73-78
Malhi, G.S.; Bell, E.; Mannie, Z.; Boyce, P.; Hopwood, M.; Bassett, D.; Mulder, R.; Porter, R.J.; Lyndon, B. 2022: RTMS and treatment-resistant depression: the need to consider class action!. Australian and New Zealand Journal of Psychiatry 56(4): 323-327
Amad, A.; Fovet, T. 2022: RTMS for depression: the difficult transition from research to clinical practice. Australian and New Zealand Journal of Psychiatry 56(1): 14-15
Toledo, R.S.öh.; Stein, D.J.ão.; Sanches, P.R.S.; da Silva, L.S.; Medeiros, H.R.; Fregni, F.; Caumo, W.; Torres, I.L.S. 2021: RTMS induces analgesia and modulates neuroinflammation and neuroplasticity in neuropathic pain model rats. Brain Research 1762: 147427
Nardone, R.; Höller, Y.; Thomschewski, A.; Brigo, F.; Orioli, A.; Höller, P.; Golaszewski, S.; Trinka, E. 2014: RTMS modulates reciprocal inhibition in patients with traumatic spinal cord injury. Spinal Cord 52(11): 831-835
Nardone, R.; Höller, Y.; Langthaler, P.B.; Lochner, P.; Golaszewski, S.; Schwenker, K.; Brigo, F.; Trinka, E. 2017: RTMS of the prefrontal cortex has analgesic effects on neuropathic pain in subjects with spinal cord injury. Spinal Cord 55(1): 20-25
Neri, F.; Romanella, S.M.; Tomai Pitinca, M.L.; Taddei, S.; Monti, L.; Benocci, S.; Santarnecchi, E.; Cappa, S.F.; Rossi, S. 2021: RTMS-induced language improvement and brain connectivity changes in logopenic/phonological variant of Primary progressive Aphasia. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 132(10): 2481-2484
Sousa, S.; Almeida, Aé.; Delgado, L.; Conceição, Aónia.; Marques, Cáudia.; da Costa, Jé.Manuel.Correia.; Castro, Aónio. 2020: RTgOWP1-f, a specific biomarker for Toxoplasma gondii oocysts. Scientific Reports 10(1): 7947
Elferink, L.A.; Anzai, K.; Scheller, R.H. 1992: Rab15, a novel low molecular weight GTP-binding protein specifically expressed in rat brain. Journal of Biological Chemistry 267(31): 22693
Wolter, S.; Löschberger, A.; Holm, T.; Aufmkolk, S.; Dabauvalle, M-Christine.; van de Linde, S.; Sauer, M. 2012: RapidSTORM: accurate, fast open-source software for localization microscopy. Nature Methods 9(11): 1040-1041
Yura, Y.; Azuma, M.; Uchida, K.; Momose, H.; Oyasu, R. 1991: Ras gene alterations in invasive and non-invasive rat bladder carcinomas induced by N-methyl-N-nitrosourea. British Journal of Cancer 64(1): 10-14
DeFeo-Jones, D.; Scolnick, E.M.; Koller, R.; Dhar, R. 1983: Ras-Related gene sequences identified and isolated from Saccharomyces cerevisiae. Nature 306(5944): 707-709
Rocchini, D.; Thouverai, E.; Marcantonio, M.; Iannacito, M.; Da Re, D.; Torresani, M.; Bacaro, G.; Bazzichetto, M.; Bernardi, A.; Foody, G.M.; Furrer, R.; Kleijn, D.; Larsen, S.; Lenoir, J.; Malavasi, M.; Marchetto, E.; Messori, F.; Montaghi, A.; Moudrý, V.ít.ěz.; Naimi, B.; Ricotta, C.; Rossini, M.; Santi, F.; Santos, M.J.; Schaepman, M.E.; Schneider, F.D.; Schuh, L.; Silvestri, S.; Ŝímová, P.; Skidmore, A.K.; Tattoni, C.; Tordoni, E.; Vicario, S.; Zannini, P.; Wegmann, M. 2021: Rasterdiv-An Information Theory tailored R package for measuring ecosystem heterogeneity from space: to the origin and back. Methods in Ecology and Evolution 12(6): 1093-1102
Schwarz, M.; Vohradský, J.ří; Modrák, M.; Pánek, J. 2020: RboAnalyzer: a Software to Improve Characterization of Non-coding RNAs from Sequence Database Search Output. Frontiers in Genetics 11: 675
Caméléna, F.ço.; Poncin, T.; Dudoignon, E.; Salmona, M.; Le Goff, J.ér.ôm.; Donay, J.-L.; Lafaurie, M.; Darmon, M.; Azoulay, E.; Plaud, B.ît.; Mebazaa, A.; Dépret, F.ço.; Jacquier, H.é; Berçot, B.éa. 2021: Rapid identification of bacteria from respiratory samples of patients hospitalized in intensive care units, with FilmArray Pneumonia Panel Plus. International Journal of Infectious Diseases: Ijid: Official Publication of the International Society for Infectious Diseases 108: 568-573
Kruger, F.; Stiefl, N.; Landrum, G.A. 2020: RdScaffoldNetwork: the Scaffold Network Implementation in RDKit. Journal of Chemical Information and Modeling 60(7): 3331-3335
Tittes, S. 2020: Rdmc: An Open Source R Package Implementing Convergent Adaptation Models of Lee and Coop (2017). G3 10(9): 3041-3046
Corey, E.J.; Zhang, F.-Y. 1999: Re- and si-Face-Selective Nitroaldol Reactions Catalyzed by a Rigid Chiral Quaternary Ammonium Salt: a Highly Stereoselective Synthesis of the HIV Protease Inhibitor Amprenavir (Vertex 478). Angewandte Chemie 38(13-14): 1931-1934
Karabayev, D.; Molkenov, A.; Yerulanuly, K.; Kabimoldayev, I.; Daniyarov, A.; Sharip, A.; Seisenova, A.; Zhumadilov, Z.; Kairov, U. 2021: Re-Searcher: GUI-based bioinformatics tool for simplified genomics data mining of VCF files. Peerj 9: E11333
Lamothe, G.; Malliavin, Térèse.E. 2018: Re-TAMD: exploring interactions between H3 peptide and YEATS domain using enhanced sampling. Bmc Structural Biology 18(1): 4
Moskalik, A. 2019: ReCAPTCHA all over again. Nature 573(7775): 620
Kinkley, S.; Helmuth, J.; Polansky, J.K.; Dunkel, I.; Gasparoni, G.; Fröhler, S.; Chen, W.; Walter, Jörn.; Hamann, A.; Chung, H-Ryun. 2016: ReChIP-seq reveals widespread bivalency of H3K4me3 and H3K27me3 in CD4(+) memory T cells. Nature Communications 7: 12514
Brun, S.; Rincheval, V.; Gaumer, Sébastien.; Mignotte, B.; Guenal, I. 2002: Reaper and bax initiate two different apoptotic pathways affecting mitochondria and antagonized by bcl-2 in Drosophila. Oncogene 21(42): 6458-6470
Yang, J-Seong.; Garriga-Canut, M.; Link, N.; Carolis, C.; Broadbent, K.; Beltran-Sastre, V.; Serrano, L.; Maurer, S.P. 2018: Rec-YnH enables simultaneous many-by-many detection of direct protein-protein and protein-RNA interactions. Nature Communications 9(1): 3747
Fishel, R.A.; James, A.A.; Kolodner, R. 1981: RecA-independent general genetic recombination of plasmids. Nature 294(5837): 184-186
Moulos, P. 2021: Recoup: flexible and versatile signal visualization from next generation sequencing. Bmc Bioinformatics 22(1): 2
Azab, M.A.; Azzam, A.Y. 2021: Impact of COVID-19 pandemic on the management of glioma patients around the world. An evidence-based review. Brain Disorders 2: 100012
Xu, S.; Feng, W.; Lu, Z.; Yu, C.Y.; Shao, W.; Nakshatri, H.; Reiter, J.L.; Gao, H.; Chu, X.; Wang, Y.; Liu, Y. 2020: RegSNPs-ASB: a Computational Framework for Identifying Allele-Specific Transcription Factor Binding from ATAC-seq Data. Frontiers in Bioengineering and Biotechnology 8: 886
Si, L.; Gu, J.; Wen, M.; Wang, R.; Fleming, J.; Li, J.; Xu, J.; Bi, L.; Deng, J. 2021: RelA Inactivation Converts Sulfonamides into Bactericidal Compounds. Frontiers in Microbiology 12: 698468
Criscuolo, N.G.; Pires, Jão.; Zhao, C.; Van Boeckel, T.P. 2021: Resistancebank.org, an open-access repository for surveys of antimicrobial resistance in animals. Scientific Data 8(1): 189
Morrissey, Z.D.; Zhan, L.; Ajilore, O.; Leow, A.D. 2021: Rest2vec: Vectorizing the resting-state functional connectome using graph embedding. Neuroimage 226: 117538
Landi, I.; Mandelli, V.; Lombardo, M.V. 2021: Reval: a Python package to determine best clustering solutions with stability-based relative clustering validation. Patterns 2(4): 100228
Sellés Vidal, L.; Ayala, R.; Stan, G.-B.; Ledesma-Amaro, R. 2021: RfaRm: An R client-side interface to facilitate the analysis of the Rfam database of RNA families. Plos one 16(1): E0245280
Guo, R.; Wang, X.; Fang, Y.; Chen, X.; Chen, K.; Huang, W.; Chen, J.; Hu, J.; Liang, F.; Du, J.; Dordoe, C.; Tian, X.; Lin, L. 2021: RhFGF20 promotes angiogenesis and vascular repair following traumatic brain injury by regulating Wnt/β-catenin pathway. Biomedicine and PharmacoTherapy 143: 112200
Lassailly, F.; Sielleur, I.; Blaise, D.; Chabannon, C. 2005: RhG-CSF does not affect the phenotype of adult donor peripheral blood NK cells. Bone Marrow Transplantation 35(1): 25-32
Rampling, R.; Steward, W.; Paul, J.; Macham, M.A.; Harvey, E.; Eckley, D. 1994: RhGM-CSF ameliorates neutropenia in patients with malignant glioma treated with BCNU. British Journal of Cancer 69(3): 541-545
Legros, M.; Fleury, J.; Bay, J.O.; Choufi, B.; Basile, M.; Condat, P.; Glenat, C.; Communal, Y.; Tavernier, F.; Bons, J.M.; Chollet, P.; Plagne, R.; Chassagne, J. 1997: RhGM-CSF vs placebo following rhGM-CSF-mobilized PBPC transplantation: a phase III double-blind randomized trial. Bone Marrow Transplantation 19(3): 209-213
Hu, J.; Yan, D.; Gao, J.; Xu, C.; Yuan, Y.; Zhu, R.; Xiang, D.; Weng, S.; Han, W.; Zang, G.; Yu, Y. 2010: RhIL-1Ra reduces hepatocellular apoptosis in mice with acetaminophen-induced acute liver failure. Laboratory Investigation; a Journal of Technical Methods and Pathology 90(12): 1737-1746
Fu, Z.; Jiang, Z.; Guo, G.; Liao, X.; Liu, M.; Xiong, Z. 2021: RhKGF-2 Attenuates Smoke Inhalation Lung Injury of Rats via Activating PI3K/Akt/Nrf2 and Repressing FoxO1-NLRP3 Inflammasome. Frontiers in Pharmacology 12: 641308
Li, H.; Xie, M.; Wang, Y.; Yang, L.; Xie, Z.; Wang, H. 2021: RiboCIRC: a comprehensive database of translatable circRNAs. Genome Biology 22(1): 79
Choi, M.H.; Ravi Kumara, G.S.; Seo, Y.J. 2020: RkDNA-graphene oxide as a simple probe for the rapid detection of miRNA21. Bioorganic and Medicinal Chemistry Letters 30(17): 127398
Nguyen, Y.; Nettleton, D. 2020: RmRNAseq: differential expression analysis for repeated-measures RNA-seq data. Bioinformatics 36(16): 4432-4439
Marusich, L.R.; Bakdash, J.Z. 2021: RmcorrShiny: a web and standalone application for repeated measures correlation. F1000research 10: 697
Silveira, I.H.; Cortes, T.ís.R.; de Oliveira, B.F.át.A.; Junger, W.L. 2021: Projections of excess cardiovascular mortality related to temperature under different climate change scenarios and regionalized climate model simulations in Brazilian cities. Environmental Research 197: 110995
Russo, A.; Saide, A.; Cagliani, R.; Cantile, M.; Botti, G.; Russo, G. 2016: RpL3 promotes the apoptosis of p53 mutated lung cancer cells by down-regulating CBS and NFκB upon 5-FU treatment. Scientific Reports 6: 38369
Li, M.-C.; Lu, J.; Lu, Y.; Xiao, T.-Y.; Liu, H.-C.; Lin, S.-Q.; Xu, D.; Li, G.-L.; Zhao, X.-Q.; Liu, Z.-G.; Zhao, L.-L.; Wan, K.-L. 2021: RpoB Mutations and Effects on Rifampin Resistance in Mycobacterium tuberculosis. Infection and Drug Resistance 14: 4119-4128
Zeng, M.-C.; Jia, Q.-J.; Tang, L.-M. 2021: RpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis isolates from rural areas of Zhejiang, China. Journal of International Medical Research 49(3): 300060521997596
Tang, M.; Li, A.; Wu, M.; Chen, X.; Xiong, X.; Zhou, Z.; Liu, D. 2020: Rs10490924 surrounding HTRA1/ARMS2 regulates the susceptibility of age-related macular degeneration. Journal of Receptor and Signal Transduction Research 2020: 1-8
Liu, J.; Li, Y.; Chen, X.-Q.; Sun, C.; Sun, X.-L.; Yang, Z.; Kong, Q.-P. 2020: Rs11046147 mutation in the promoter region of lactate dehydrogenase-B as a potential predictor of prognosis in triple-negative breast cancer. Cancer Communications 40(6): 279-282
Xu, J.; Li, G.; Chen, M.; Li, W.; Wu, Y.; Zhang, X.; Cui, Y.; Zhang, B. 2021: Rs12537 Is a Novel Susceptibility SNP Associated with Estrogen Receptor Positive Breast Cancer in Chinese Han Population. Frontiers in Medicine 8: 708644
Zhou, J.; Bao, Q.; Liang, S.; Guo, H.; Meng, X.; Zhang, G.; Li, P. 2021: Rs1344706 polymorphism of zinc finger protein 804a (ZNF804a) gene related to the integrity of white matter fiber bundle in schizophrenics. Experimental and Therapeutic Medicine 22(1): 778
Xiao, X.; Yang, Y.; Ren, Y.; Zou, D.; Zhang, K.; Wu, Y. 2017: Rs1760944 Polymorphism in the APE1 Region is Associated with Risk and Prognosis of Osteosarcoma in the Chinese Han Population. Scientific Reports 7(1): 9331
Zeng, Q.; Tang, T.; Huang, B.; Bu, S.; Xiao, Y.; Dai, Y.; Wei, Z.; Huang, L.; Jiang, S. 2021: Rs1840680 single nucleotide polymorphism in Pentraxin 3: a potential protective biomarker of severe community-acquired pneumonia. Journal of International Medical Research 49(4): 3000605211010621
Hitomi, Y.; Aiba, Y.; Kawai, Y.; Kojima, K.; Ueno, K.; Nishida, N.; Kawashima, M.; Gervais, O.; Khor, S-Soon.; Nagasaki, M.; Tokunaga, K.; Nakamura, M.; Tsuiji, M. 2021: Rs1944919 on chromosome 11q23.1 and its effector genes COLCA1/COLCA2 confer susceptibility to primary biliary cholangitis. Scientific Reports 11(1): 4557
Hu, Y.; Sun, J.-Y.; Zhang, Y.; Zhang, H.; Gao, S.; Wang, T.; Han, Z.; Wang, L.; Sun, B.-L.; Liu, G. 2021: Rs1990622 variant associates with Alzheimer's disease and regulates TMEM106B expression in human brain tissues. Bmc Medicine 19(1): 11
Degtyareva, A.O.; Leberfarb, E.Y.; Efimova, E.G.; Brusentsov, I.I.; Usova, A.V.; Lushnikova, E.L.; Merkulova, T.I. 2020: Rs2072580T>A Polymorphism in the Overlapping Promoter Regions of the SART3 and ISCU Genes Associated with the Risk of Breast Cancer. Bulletin of Experimental Biology and Medicine 169(1): 81-84
Glas, Jürgen.; Seiderer, J.; Pasciuto, G.; Tillack, C.; Diegelmann, J.; Pfennig, S.; Konrad, A.; Schmechel, S.; Wetzke, M.; Török, H-Paula.; Stallhofer, J.; Jürgens, M.; Griga, T.; Klein, W.; Epplen, Jörg.T.; Schiemann, U.; Mussack, T.; Lohse, P.; Göke, B.; Ochsenkühn, T.; Folwaczny, M.; Müller-Myhsok, B.; Brand, S. 2009: Rs224136 on chromosome 10q21.1 and variants in PHOX2B, NCF4, and FAM92B are not major genetic risk factors for susceptibility to Crohn's disease in the German population. American Journal of Gastroenterology 104(3): 665-672
Motawi, T.Mohamed.Kamal.; Sadik, N.Abdel.Hamid.; Sabry, D.; Shahin, N.Nabil.; Fahim, S.Atef. 2019: Rs2267531, a promoter SNP within glypican-3 gene in the X chromosome, is associated with hepatocellular carcinoma in Egyptians. Scientific Reports 9(1): 6868
Qi, N.; Chen, Y.; Zeng, Y.; Bao, M.; Long, X.; Guo, Y.; Tan, A.; Gao, Y.; Zhang, H.; Yang, X.; Hu, Y.; Mo, Z.; Jiang, Y. 2020: Rs2274911 polymorphism in GPRC6A associated with serum E2 and PSA in a Southern Chinese male population. Gene 763: 145067
Steck, A.K.; Baschal, E.E.; Jasinski, J.M.; Boehm, B.O.; Bottini, N.; Concannon, P.; Julier, C.; Morahan, G.; Noble, J.A.; Polychronakos, C.; She, J.X.; Eisenbarth, G.S. 2009: Rs2476601 T allele (R620W) defines high-risk PTPN22 type I diabetes-associated haplotypes with preliminary evidence for an additional protective haplotype. Genes and Immunity 10 Suppl. 1: S21-S26
Schulz, S.; Zimmer, P.; Pütz, N.; Jurianz, E.; Schaller, H.-G.ün.; Reichert, S. 2020: Rs2476601 in PTPN22 gene in rheumatoid arthritis and periodontitis-a possible interface?. Journal of Translational Medicine 18(1): 389
Liu, J.; Lončar, I.; Collée, J.Margriet.; Bolla, M.K.; Dennis, J.; Michailidou, K.; Wang, Q.; Andrulis, I.L.; Barile, M.; Beckmann, M.W.; Behrens, S.; Benitez, J.; Blomqvist, C.; Boeckx, B.; Bogdanova, N.V.; Bojesen, S.E.; Brauch, H.; Brennan, P.; Brenner, H.; Broeks, A.; Burwinkel, B.; Chang-Claude, J.; Chen, S-Tung.; Chenevix-Trench, G.; Cheng, C.Y.; Choi, J-Yeob.; Couch, F.J.; Cox, A.; Cross, S.S.; Cuk, K.; Czene, K.; Dörk, T.; Dos-Santos-Silva, I.; Fasching, P.A.; Figueroa, J.; Flyger, H.; García-Closas, M.; Giles, G.G.; Glendon, G.; Goldberg, M.S.; Gon 2016: Rs2735383, located at a microRNA binding site in the 3'UTR of NBS1, is not associated with breast cancer risk. Scientific Reports 6: 36874
Hall, I.F.; Climent, M.; Viviani Anselmi, C.; Papa, L.; Tragante, V.; Lambroia, L.; Farina, F.M.; Kleber, M.E.; März, W.; Biguori, C.; Condorelli, G.; Elia, L. 2021: Rs41291957 controls miR-143 and miR-145 expression and impacts coronary artery disease risk. Embo Molecular Medicine 13(10): E14060
Dong, J.; Zhou, P.; Wu, Y.; Chen, Y.; Xie, H.; Gao, Y.; Lu, J.; Yang, J.; Zhang, X.; Wen, L.; Li, T.; Tang, F. 2022: Integrating single-cell datasets with ambiguous batch information by incorporating molecular network features. Briefings in Bioinformatics 23(1): 211