An Archimedean Proof of Heron's Formula for the Area of a Triangle| Reconstructed
Taisbak, C.M.
Centaurus Kobenhavn 24: 110-116
1980
Accession: 072937765
Full Text Article emailed within 1 workday: $29.90
Related References
Taisbak*, C.M. 1980: An Archimedean Proof of Heron's Formula for the Area of a Triang≤ Reconstructed Centaurus 24(1): 110-116Das, P.; Juyal, A.; Moody, D. 2017: Integral Isosceles Triangle-Parallelogram and Heron triangle-Rhombus Pairs with a Common Area and Common Perimeter Journal of Number Theory 180: 208-218
Lévy-Leblond, J. 2020: A Symmetric 3D Proof of Heron's Formula The Mathematical Intelligencer 43(2): 37-39
Miller, G.A. 1921: The Formula ½a(a + 1) for the Area of an Equilateral Triangle The American Mathematical Monthly 28(6-7): 256-258
Bradley, E.C.; Barr, J.W. 1969: Fore-'n-aft triangle formula for rapid estimation of area. Dye dilution curve American Heart Journal 78(5): 643-648
Bray, H.E. 1923: Proof of a formula for an area Bulletin of the American Mathematical Society 29(6): 264-270
Chen, H.; Feng, Q.; Zhang, X.; Zhou, W.; Geng, Y. 2017: A prediction formula for ratio of injection–production control area in triangle well pattern Journal of Petroleum Exploration and Production Technology 8(1): 195-203
Oxman, V.; Sigler, A. 2020: An inequality between the area of a triangle inscribed in a given triangle and the harmonic mean of the areas of vertex triangles International Journal of Mathematical Education in Science and Technology: 1-7
Fowler, TJ.; Iwata, K. 1995: Darriwilian-Gisbornian conodonts from the Triangle Group, Triangle Creek area, New South Wales Australian Journal of Earth Sciences 42(2): 119-122
Renner, E. 2002: The Black Triangle area--fit for Europe? Numerical air quality studies for the Black Triangle area Ambio 31(3): 231-235
Yun, H.; Lee, G.; Park, W.S. 2014: Formula for self‐resonant frequency of Archimedean spiral coils Electronics Letters 50(25): 1974-1975
Welliaveetil, J. 2019: A Riemann–Hurwitz formula for skeleta in non-Archimedean geometry European Journal of Mathematics 6(2): 453-487
Blanke, M.; Buras, A.J. 2016: Universal Unitarity Triangle 2016 and the tension between [Formula: see text] and [Formula: see text] in CMFV models European Physical Journal. C Particles and Fields 76(4): 197
Boldreghini, P.; Tinarelli, R.; Rizzoli, M. 1995: Feeding strategies of grey heron Ardea cinerea and night heron Nycticorax nycticorax in a fish-farming area of the central Po Plain Supplo alle Ricerche di Biologia della Selvaggina 22. (Marzo)
Klain, D.A. 2004: An Intuitive Derivation of Heron's Formula The American Mathematical Monthly 111(8): 709-712
Weeks, R; Aliño, P M.; Atkinson, S; Beldia, P; Binson, A; Campos, W L.; Djohani, R; Green, A L.; Hamilton, R; Horigue, V; Jumin, R; Kalim, K; Kasasiah, A; Kereseka, J; Klein, C; Laroya, L; Magupin, S; Masike, B; Mohan, C; Da Silva Pinto, R Miguel; Vave-Karamui, A; Villanoy, C; Welly, M; White, A T. 2014: Developing Marine Protected Area Networks in the Coral Triangle: Good Practices for Expanding the Coral Triangle Marine Protected Area System Coastal Management 42(2): 183-205
Carletti, T. 2003: The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations Discrete-Continuous Dynamical Systems - A 9(4): 835-858
Fujita, T.; Kawanishi, Y. 2008: A proof of its formula using a discrete its formula Studia Scientiarum Mathematicarum Hungarica 45(1): 125-134
Finney, P.; Jeffers, H.; Anderson, P.; Rubenthaler, G. 1976: Short time baking systems. III. Interdependence of diastatic activity, proof time, proof height, loaf volume and other bread functional properties in a sugarfree formula Bakers digest 50(6): 46-47
Dress, A.; Lokot, T. 2003: A simple proof of the triangle inequality for the NTV metric Applied Mathematics Letters 16(6): 809-813