Comparison of performance of partial least squares regression, secured principal component regression, and modified secured principal component regression for determination of human serum albumin, γ-globulin and glucose in buffer solutions and in vivo blood glucose quantification by near-infrared spectroscopy
Li, B.Y.; Kasemsumran, S.; Yun, H.U.; Liang, Y.Z.; Yukihiro I.
Analytical and Bioanalytical Chemistry 387(2): 603-611
2007
Accession: 072997241
PDF emailed within 1 workday: $29.90
Related References
Li, B.-Y.; Kasemsumran, S.; Hu, Y.; Liang, Y.-Z.; Ozaki, Y. 2007: Comparison of performance of partial least squares regression, secured principal component regression, and modified secured principal component regression for determination of human serum albumin, gamma-globulin and glucose in buffer solutions and in vivo blood glucose quantification by near-infrared spectroscopy Analytical and Bioanalytical Chemistry 387(2): 603-611Kasemsumran, S.; Du, Y.-P.; Murayama, K.; Huehne, M.; Ozaki, Y. 2003: Simultaneous determination of human serum albumin, gamma-globulin, and glucose in a phosphate buffer solution by near-infrared spectroscopy with moving window partial least-squares regression Analyst 128(12): 1471-1477
Vigneau, E.; Bertrand, D.; Qannari, E.M. 1996: Application of latent root regression for calibration in near-infrared spectroscopy. Comparison with principal component regression and partial least squares Chemometrics and Intelligent Laboratory Systems 35(2): 231-238
Polat, E.; Gunay, S. 2021: The Comparison of Partial Least Squares Regression, Principal Component Regression and Ridge Regression with Multiple Linear Regression for Predicting Pm10 Concentration Level Based on Meteorological Parameters Journal of Data Science: 663-692
Hsu YungHeng; Lin WenShin; Ho SiuChuen; Kuo BoJein 2007: Comparison of the partial least squares regression, principal component regression, and neural networks models for predicting the crude protein content of brown rice on the near-infrared spectral data Crop, Environment and Bioinformatics 4(1): 41-48
Murayama, K.; Yamada, K.; Tsenkova, R.; Wang, Y.; Ozaki, Y. 1998: Near-infrared spectra of serum albumin and γ-globulin and determination of their concentrations in phosphate buffer solutions by partial least squares regression Vibrational Spectroscopy 18(1): 33-40
Schumann, S.; Nolte, L.-P.; Zheng, G. 2013: Comparison of partial least squares regression and principal component regression for pelvic shape prediction Journal of Biomechanics 46(1): 197-199
Li, B.Y.; Yun, H.U.; Liang, Y.Z.; Xie, P.S.; Ozaki, Y. 2006: Modified secured principal component regression for detection of unexpected chromatographic features in herbal fingerprints Analyst (London 1877. Print) 131(4): 538-546
Li, B.-Y.; Hu, Y.; Liang, Y.-Z.; Xie, P.-S.; Ozaki, Y. 2006: Modified secured principal component regression for detection of unexpected chromatographic features in herbal fingerprints Analyst 131(4): 538-546
Xie, Y.; Song, Y.; Zhang, Y.; Zhao, B. 2010: Near-infrared spectroscopy quantitative determination of pefloxacin mesylate concentration in pharmaceuticals by using partial least squares and principal component regression multivariate calibration Spectrochimica Acta. Part a Molecular and Biomolecular Spectroscopy 75(5): 1535-1539
Yaroshchyk, P.; Death, D.L.; Spencer, S.J. 2012: Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS J. Anal. At. Spectrom. 27(1): 92-98
Kun-Chi-Su; Bo-Jein-Kuo; Mei-Chu-Hong 2001: The comparison of stepwise regression and principal component regression in near-infrared spectroscopy Journal of the Agricultural Association of China 2(3): 226-240
Vogt, F.; Mizaikoff, B. 2003: Introduction and application of secured principal component regression for analysis of uncalibrated spectral features in optical spectroscopy and chemical sensing Analytical chemistry 75(13): 3050-3058
Murayama, K.; Yamada, K.; Tsenkova, R.; Wang, Y.; Ozaki, Y. 1998: Determination of human serum albumin and gamma-globulin in a control serum solution by near-infrared spectroscopy and partial least squares regression Fresenius' Journal of Analytical Chemistry 362(1): 155-161
Mevik, B.H.; Cederkvist, H.R. 2004: Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) Journal of Chemometrics 18(9): 422-429
Boyd, M.; Porth, B.; Porth, L.; Seng Tan, K.; Wang, S.; Zhu, W. 2020: The Design of Weather Index Insurance Using Principal Component Regression and Partial Least Squares Regression: the Case of Forage Crops North American Actuarial Journal 24(3): 355-369
Setiowaty, G.; Man, Y.B.C. 2004: Multivariate determination of cloud point in palm oil using partial least squares and principal component regression based on FTIR spectroscopy Journal of the American Oil Chemists' Society 81(1): 7-11
Ammawath, W.C.e-Man, Y.; Baharin, B.; Abdul-Rahman, R. 2006: Multivariate determination of propyl gallate in rbd palm olein using partial least squares and principal component regression based on ftir spectroscopy Journal of food lipids 13(1): 1-11
Liu, Z.-y.; Huang, J.-f.; Shi, J.-j.; Tao, R.-x.; Zhou, W.; Zhang, L.-L. 2007: Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression Journal of Zhejiang University. Science. B 8(10): 738-744
Linker, R.; Kenny, A.; Shaviv, A.; Singher, L.; Shmulevich, I. 2004: Fourier transform infrared-attenuated total reflection nitrate determination of soil pastes using principal component regression, partial least squares, and cross-correlation Applied Spectroscopy 58(5): 516-520