A comparison of bayes estimators and constrained least square estimators
Gruber, M.H.J.
Communications in Statistics. Theory and Methods 14(2): 479-489
1985
ISSN/ISBN: 0361-0926 Accession: 073632113
PDF emailed within 1 workday: $29.90
Related References
Frey, J.; Cressie, N. 2003: Some results on constrained Bayes estimators Statistics and Probability Letters 65(4): 389-399Penskaya, M.Y. 1995: On the lower bounds for mean square error of empirical bayes estimators Journal of Mathematical Sciences 75(2): 1524-1535
Fourdrinier, D.; Marchand, . 2010: On Bayes estimators with uniform priors on spheres and their comparative performance with maximum likelihood estimators for estimating bounded multivariate normal means Journal of Multivariate Analysis 101(6): 1390-1399
Wei, L.; Trenkler, G. 1995: Mean square error matrix superiority of Empirical Bayes Estimators under misspecification Test 4(1): 187-205
Obrien, R.M. 2011: Intrinsic Estimators as Constrained Estimators in Age-Period-Cohort Accounting Models Sociological Methods and Research 40(3): 467-470
Efron, B.; Morris, C. 1971: Limiting the Risk of Bayes and Empirical Bayes Estimators- Part I: the Bayes Case Journal of the American Statistical Association 66(336): 807-815
Chen, C.; Baker Jr, T.C. 1982: On bayes-type estimators of linearly or log-linearly constrained multinomial cell probabilities Communications in Statistics - Theory and Methods 11(18): 2061-2073
Martz, H.F.; Lian, M.G. 1974: A survey and comparison of several empirical bayes estimators for the binomial parameter Journal of Statistical Computation and Simulation 3(2): 163-173
Soliman, A.A. 2000: Comparison of linex and quadratic bayes estimators for the Rayleigh distribution Communications in Statistics. Theory and Methods 29(1): 95-107
Soliman, A. A. 2000: Comparison of linex and quadratic bayes estimators foe the rayleigh distribution Communications in Statistics - Theory and Methods 29(1): 95-107
Ohyauchi, N. 2002: Comparison of the Bayes risks of estimators for a family of truncated normal distributions Communications in Statistics. Theory and Methods 31(5): 699-718
Baksalary, J.K.; Van Eijnsbergen, A.C. 1988: A comparison of two criteria for ordinary-least-suares estimators to be best linear unliased estimators The American Statistician 42(3): 205-208
Nanjundan, G.; Naika, T.R. 2012: Asymptotic Comparison of Method of Moments Estimators and Maximum Likelihood Estimators of Parameters in Zero-Inflated Poisson Model Applied Mathematics 03(06): 610-616
Farver, T.B. 2002: Comparison of ratio-synthetic, sample-size dependent and EBLUP estimators as estimators of food-animal productivity parameters Preventive Veterinary Medicine 52(3-4): 313-332
Zaher, H. 2014: A Comparison between Fuzzy Log-logistic Parameters Estimators and other Estimators British Journal of Applied Science-Technology 4(24): 3519-3538
Mingchung, Y.A.N.G. 1990: Compromise between generalized Bayes and Bayes estimators of poisson means under entropy loss Communications in Statistics. Theory and Methods 19(3): 935-951
Lichun, W.A.N.G.; Veraverbeke, N. 2008: MSE superiority of Bayes and empirical Bayes estimators in two generalized seemingly unrelated regressions Statistics and Probability Letters 78(2): 109-117
Ogasawara, H. 2013: Asymptotic properties of the Bayes and pseudo Bayes estimators of ability in item response theory Journal of Multivariate Analysis 114: 359-377
Azimi, R.; Sarikhanbaglu, F.A. 2014: Bayes and Empirical Bayes Estimators based on Generalized Half Logistic Records Data Journal of Statistics Applications-Probability 3(2): 145-152
Waleska Simões, P.; Mazzuchello, L.L.; Toniazzo de Abreu, L.L.; Garcia, D.; dos Passos, M.ê G.; Venson, R.; Bisognin Ceretta, L.; Veiga Silva, A.C.; da Rosa, M.I.ês.; Martins, P.J.ão. 2015: A Comparative Study of Bayes Net, Naive Bayes and Averaged One-Dependence Estimators for Osteoporosis Analysis Studies in Health Technology and Informatics 216: 1075