A fuzzy operator for the enhancement of blurred and noisy image
Russo, F.; Ramponi, G.
IEEE Transactions on Image Processing 4(8): 1169-1174
1995
ISSN/ISBN: 1057-7149 Accession: 073669649
Full Text Article emailed within 1 workday: $29.90
Related References
Russo, F.; Ramponi, G. 1995: A fuzzy operator for the enhancement of blurred and noisy images IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 4(8): 1169-1174Fan, C.M.; Namazi, N.M. 2001: Nonuniform image motion estimation from noisy and blurred image sequences International Journal of Modelling and Simulation 21(3): 224-233
Takeyama, S.; Ono, S.; Kumazawa, I. 2017: Image Restoration with Multiple Hard Constraints on Data-Fidelity to Blurred/Noisy Image Pair Ieice Transactions on Information and Systems E100.D(9): 1953-1961
Klapp, I.; Sochen, N.; Mendlovic, D. 2014: Blurred and noisy image pairs in parallel optics Journal of the Optical Society of America. a Optics Image Science and Vision 31(11): 2529-2537
Strickland, R.N.; Chandler, D.W. 1991: Reconstruction of an axisymmetric image from its blurred and noisy projection Applied Optics 30(14): 1811-1819
Gu, C.; Lu, X.; He, Y.; Zhang, C. 2021: Blur Removal Via Blurred-Noisy Image Pair IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 30: 345-359
Lee, S.; Park, H.; Hwang, S. 2012: Motion deblurring using edge map with blurred/noisy image pairs Optics Communications 285(7): 1777-1786
Akila, C.; Varatharajan, R. 2017: Color fidelity and visibility enhancement of underwater image de-hazing by enhanced fuzzy intensification operator Multimedia Tools and Applications 77(4): 4309-4322
Ozkan, M.K.; Erdem, A.T.; Sezan, M.I.; Tekalp, A.M. 1992: Efficient multiframe Wiener restoration of blurred and noisy image sequences IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 1(4): 453-476
Barlaud, M.; Blancferaud, L.; Mathieu, P. 1991: Blind restoration of noisy blurred image using a constrained maximum likelihood method Optical Engineering (Bellingham. Print) 30(4): 431-437
Chen, X.; Zhu, Y.; Liu, W.; Sun, J.; Zhang, Y. 2020: Blur kernel estimation of noisy-blurred image via dynamic structure prior Neurocomputing 403: 268-281
Brailean, J.C.; Katsaggelos, A.K. 1995: Simultaneous recursive displacement estimation and restoration of noisy-blurred image sequences IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 4(9): 1236-1251
Bruni, C.; Bruni, R.; De Santis, A.; Iacoviello, D.; Koch, G. 2002: Global optimal image reconstruction from blurred noisy data by a Bayesian approach Journal of Optimization Theory and Applications 115(1): 67-96
Elad, M.; Feuer, A. 1997: Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 6(12): 1646-1658
Surya Prabha, D.; Satheesh Kumar, J. 2016: An Efficient Image Contrast Enhancement Algorithm Using Genetic Algorithm and Fuzzy Intensification Operator Wireless Personal Communications 93(1): 223-244
Russo, F.; Ramponi, G. 1992: Fuzzy operator for sharpening of noisy images Electronics Letters 28(18): 1715-1717
Daqi Zhang; Shiru Qu; Li He; Shuang Shi 2009: Automatic ridgelet image enhancement algorithm for road crack image based on fuzzy entropy and fuzzy divergence Optics and Lasers in Engineering 47(11): 1216-1225
Lee, H.Y.; Park, D.S.; Lee, S.D.; Kim, C.Y. 2006: An effective image enhancement filtering for noisy image sequences Proc. Spie Int. Soc. Opt. Eng: 60690E.1-60690E.9
Arif, A.; Li, T.; Cheng, C. 2017: Blurred fingerprint image enhancement: algorithm analysis and performance evaluation Signal, Image and Video Processing 12(4): 767-774
Shen, Q. 1990: Fuzzy intraframe smoothing of a noisy image Electronics Letters 26(13): 908-910