A novel machine learning approach for estimation of electricity demand: An empirical evidence from Thailand
Elham Sadat, M.O.S.T.A.F.A.V.I.; Seyyed Iman, M.O.S.T.A.F.A.V.I.; Jaafari, A.; Hosseinpour, F.
Energy Conversion and Management 74: 548-555
2013
ISSN/ISBN: 0196-8904 Accession: 073751365
PDF emailed within 1 workday: $29.90
Related References
Knaus, M. C.; Lechner, M.; Strittmatter, A. 2020: Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence The Econometrics Journal 24(1): 134-161Cappers, P.; Goldman, C.; Kathan, D. 2010: Demand response in U. S. electricity markets: Empirical evidence Energy 35(4): 1526-1535
Kandananond, K. 2011: Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach Energies 4(8): 1246-1257
He, X; Reiner, D 2016: Electricity demand and basic needs: Empirical evidence from China's households Energy Policy 90: 212-221
Bedi, J.; Toshniwal, D. 2018: Empirical Mode Decomposition Based Deep Learning for Electricity Demand Forecasting IEEE Access 6: 49144-49156
Román-Portabales, A.ón.; López-Nores, M.ín.; Pazos-Arias, J.é J. 2021: Systematic Review of Electricity Demand Forecast Using ANN-Based Machine Learning Algorithms Sensors 21(13)
Chen, Y.; Sun, E.W.; Lin, Y. 2019: Machine learning with parallel neural networks for analyzing and forecasting electricity demand Computational Economics 56(2): 569-597
Fan, J.; Hu, J.; Zhang, X. 2019: Impacts of climate change on electricity demand in China: An empirical estimation based on panel data Energy 170: 880-888
Bönte, W.; Nielen, S.; Valitov, N.; Engelmeyer, T. 2015: Price elasticity of demand in the EPEX spot market for electricity- New empirical evidence Economics Letters 135: 5-8
Roth, L.; Lowitzsch, J.; Yildiz, .; Hashani, A. 2018: Does (Co-)ownership in renewables matter for an electricity consumer's demand flexibility? Empirical evidence from Germany Energy Research-Social Science 46: 169-182
Allee, A.; Williams, N.J.; Davis, A.; Jaramillo, P. 2021: Predicting initial electricity demand in off-grid Tanzanian communities using customer survey data and machine learning models Energy for Sustainable Development 62: 56-66
Kantasa-ard, A.; Nouiri, M.; Bekrar, A.; Ait el cadi, A.; Sallez, Y. 2020: Machine learning for demand forecasting in the physical internet: a case study of agricultural products in Thailand International Journal of Production Research 59(24): 7491-7515
Bajari, P.; Nekipelov, D.; Ryan, S.P.; Yang, M. 2015: Machine Learning Methods for Demand Estimation American Economic Review 105(5): 481-485
Jachowski, N R.A.; Quak, M S.Y.; Friess, D A.; Duangnamon, D; Webb, E L.; Ziegler, A D. 2013: Mangrove biomass estimation in Southwest Thailand using machine learning Applied Geography 45: 311-321
Kaleem, M.; Guergachi, A.; Krishnan, S. 2021: Comparison of Empirical Mode Decomposition, Wavelets, and Different Machine Learning Approaches for Patient-Specific Seizure Detection Using Signal-Derived Empirical Dictionary Approach Frontiers in Digital Health 3: 738996
Li, R.; Chen, X.; Balezentis, T.; Streimikiene, D.; Niu, Z. 2020: Multi-step least squares support vector machine modeling approach for forecasting short-term electricity demand with application Neural Computing and Applications 33(1): 301-320
Anand Shrivastava, N; Ketan Panigrahi, B 2013: Point and prediction interval estimation for electricity markets with machine learning techniques and wavelet transforms Neurocomputing 118: 301-310
Al‐Musaylh, M.S.; Al‐Daffaie, K.; Prasad, R. 2021: Gas consumption demand forecasting with empirical wavelet transform based machine learning model: a case study International Journal of Energy Research 45(10): 15124-15138
Azadeh, A.; Saberi, M.; Ghaderi, S.F.; Gitiforouz, A.; Ebrahimipour, V. 2008: Improved estimation of electricity demand function by integration of fuzzy system and data mining approach Energy Conversion and Management 49(8): 2165-2177
Connor, J.D.; Glyer, J.D.; Adams, R.M. 1989: Some further evidence on the derived demand for irrigation electricity: a dual cost function approach Water Resources Research 25(7): 1461-1468