A theorem of Calabi-Matsushima's type
Mabuchi, T.
Osaka Journal of Mathematics 39(1): 49-57
2002
ISSN/ISBN: 0030-6126 Accession: 073832701
PDF emailed within 1 workday: $29.90
Related References
Xiong, J.; Bao, J. 2011: On Jörgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Ampère equations Journal of Differential Equations 250(1): 367-385Sawaki, S. 1962: A generalization of Matsushima's theorem Mathematische Annalen 146(4): 279-286
Kodama, J. 1993: On the environment and the organisms in Matsushima Bay Situation of Matsushima Bay as the nursery ground of larval fishes Bulletin of the Japanese Society of Fisheries Oceanography 57(1): 72-75
Qingchun, J.I. 2006: On the C0-estimate in Calabi-Yau theorem Nonlinear Analysis 64(11): 2492-2495
Ji, Q. 2006: On the -estimate in Calabi–Yau theorem Nonlinear Analysis: Theory, Methods-Applications 64(11): 2492-2495
Błocki, Z. 2011: On the uniform estimate in the Calabi-Yau theorem, Ii Science China Mathematics 54(7): 1375-1377
Wu, Y. 2012: New proof of a Calabi's theorem Frontiers of Mathematics in China 7(5): 933-941
Błocki, Z. 2008: A gradient estimate in the Calabi–Yau theorem Mathematische Annalen 344(2): 317-327
Romero, A.; Rubio, R.M. 2009: New proof of the Calabi-Bernstein theorem Geometriae Dedicata 147(1): 173-176
Błocki, Z. 2005: On uniform estimate in Calabi-Yau theorem Science in China Series A: Mathematics 48(S 1): 244-247
Caffarelli, L.; Yanyan, L.I. 2003: An extension to a theorem of Jörgens, Calabi, and Pogorelov Communications on Pure and Applied Mathematics 56(5): 549-583
Aledo, J.A.; Romero, A.; Rubio, R.M. 2015: The classical Calabi–Bernstein Theorem revisited Journal of Mathematical Analysis and Applications 431(2): 1172-1177
Pansu, P. 1998: Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles - Matsushima's and Garland's formulas Bulletin de la Societe Mathematique de France 126(1): 107-139
Serrato-Diaz, L.M.; Ricera-Vargas, L.I.; Goenaga, R. 2010: First Report of Sooty Mold of Longan (Dimocarpus Longan L.) Caused by Tripospermum Porosporiferum Matsushima and T. Variabile Matsushima in Puerto Rico Journal of Agriculture of the University of Puerto Rico 94(3-4): 285-287
AlÍAs, L.J.; Palmer, B. 2001: On the Gaussian Curvature of Maximal Surfaces and the Calabi–bernstein Theorem Bulletin of the London Mathematical Society 33(4): 454-458
Romero, A. 1996: Simple proof of Calabi-Bernstein's Theorem on maximal surfaces Proceedings of the American Mathematical Society 124(4): 1315-1317
Yabe, H. 1928: Sendai and Matsushima. Excursion to Matsushima and Sendai; geological guide Pan Pacific Sci Congress Guide Book C3: 1926: 1-18
Zucconi, G.; Avon, A. 1992: Daniele Calabi: variazioni da un'idea di spazio introverso - Daniele Calabi: variations about a concept of an introvertive space - Daniele Calabi: Variations autour d'un concept d'espace introverti Domus (743): 82-88
Romero, A. 1987: An extension of Calabi's rigidity theorem to complex submanifolds of indefinite complex space forms Manuscripta Mathematica 59(3): 261-276
Craven, B.D.; Jeyakumar, V. 1986: Equivalence of a Ky Fan type minimax theorem and a Gordan type alternative theorem Operations Research Letters 5(2): 99-102