Adaptive robust estimation based on a family of generalized exponential power distributions
Crowder, G.E.; Moore, A.H.
IEEE Transactions on Reliability 32(5): 488-495
1983
ISSN/ISBN: 0018-9529
Accession: 073897564
PDF emailed within 1 workday: $29.90
Related References
Lye, J.N.; Martin, V.L. 1993: Robust estimation, nonnormalities, and generalized exponential distributions Journal of the American Statistical Association 88(421): 261-267Rahman, M.; Gokhale, D.V. 1996: On estimation of parameters of the exponential power family of distributions Communications in Statistics. Simulation and Computation 25(2): 291-299
Aldahlan, M.A.; Jamal, F.; Chesneau, C.; Elbatal, I.; Elgarhy, M. 2020: Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications Plos one 15(3): E0230004
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 1996: Exponential power estimation (EPE) based adaptive equalization for stationary and time varying channels Signal Processing 54(1): 49-58
Baibing, L.I.; De Moor, B. 1999: A family of adaptive robust estimates based on the symmetrical generalized logistic distribution Communications in Statistics. Theory and Methods 28(6): 1293-1310
Yu, Z.; Cui, W.; Du, Y.; Ba, B.; Quan, M. 2022: Null Broadening Robust Adaptive Beamforming Algorithm Based on Power Estimation Sensors 22(18)
Harris, C.M.; Sykes, E.A. 1987: Likelihood estimation for generalized mixed exponential distributions Naval Research Logistics 34(2): 251-279
Gloor, W.E. 1983: Extending the continuum of molecular weight distributions based on the generalized exponential (Gex) distributions Journal of Applied Polymer Science 28(2): 795-805
Sum, S.T.; Oommen, B.J. 1995: Mixture decomposition for distributions from the exponential family using a generalized method of moments IEEE Transactions on Systems, Man, and Cybernetics 25(7): 1139-1149
Vytaras Brazauskas; Robert Serfling 2000: Robust Estimation of Tail Parameters for Two-Parameter Pareto and Exponential Models via Generalized Quantile Statistics Extremes 3(3): 231-249
Gomez, E.; Gomezvillegas, M.A.; Marin, J.M. 1998: A multivariate generalization of the power exponential family of distributions Communications in Statistics. Theory and Methods 27(3): 589-600
Badahdah, S.O.; Siddiqui, M.M. 1991: Adaptive robust estimation of location for stable distributions Communications in Statistics. Theory and Methods 20(2): 631-652
Gomez Sanchezmanzano, E.; Gomezvillegas, M.A.; Marindiazaraque, J.M. 2002: A matrix variate generalization of the power exponential family of distributions Communications in Statistics. Theory and Methods 31(12): 2167-2182
Zhan, T.; Chevoneva, I.; Iglewicz, B. 2011: Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions Computational Statistics and Data Analysis 55(1): 457-465
Arup, B.O.S.E.; Benzion, B.O.U.K.A.I. 1993: Sequential estimation results for a two-parameter exponential family of distributions Annals of Statistics 21(1): 484-502
Tran Huy, D.A.T.; Takeda, K.; Itakura, F. 2008: Multichannel Speech Enhancement Based on Generalized Gamma Prior Distribution with Its Online Adaptive Estimation : Robust speech processing in realistic environments Ieice Transactions on Information and Systems 91(3): 439-447
Gokcesu, K.; Kozat, S.S. 2018: Online Density Estimation of Nonstationary Sources Using Exponential Family of Distributions IEEE Transactions on Neural Networks and Learning Systems 29(9): 4473-4478
Bose, A.; Boukai, B. 1996: Estimation with prescribed proportional accuracy for a two-parameter exponential family of distributions Annals of Statistics 24(4): 1792-1803
Sommen, P.C.W.; Van Gerwen, P.J.; Kotmans, H.J.; Janssen, A.J.E.M. 1987: Convergence analysis of a frequency-domain adaptive filter with exponential power averaging and generalized window function IEEE Transactions on Circuits and Systems 34(7): 788-798
Marsman, M.; Maris, G.; Bechger, T.; Glas, C. 2017: Turning Simulation into Estimation: Generalized Exchange Algorithms for Exponential Family Models Plos one 12(1): E0169787