An alternative continuum description of smectic C liquid crystals with molecular elastic interactions
Min, J.I.A.N.G.
Physica. B, Condensed Matter 382(1-2): 123-128
2006
ISSN/ISBN: 0921-4526 Accession: 073970223
PDF emailed within 1 workday: $29.90
Related References
Singh, Y.; Ram, J. 2001: Molecular theory of elastic constants of liquid crystals. III. Application to smectic phases with tilted orientational order Physical Review. E Statistical Nonlinear and Soft Matter Physics 64(5 Part 1): 051705Noda, Y.; Shimono, S.; Baba, M.; Yamauchi, J.; Uchida, Y.; Ikuma, N.; Tamura, R. 2008: EPR Investigations on Molecular Orientation of Paramagnetic Liquid Crystals in a Surface-Stabilized Liquid Crystal Cell: Studies on a Smectic C or Chiral Smectic C Phase Applied Magnetic Resonance 33(3): 251-267
Fisch, M.R.; Pershan, P.S.; Sorensen, L.B. 1984: Absolute measurement of the critical behavior of the smectic elastic constant of bilayer and monolayer smectic-A liquid crystals on approaching the transition to the nematic phase Physical Review. A, General Physics 29(5): 2741-2750
Ahmadi, G. 1982: A Continuum Theory of Smectic a Liquid Crystals Journal of Rheology 26(6): 535-556
Leslie, F.M.; Stewart, I.W.; Nakagawa, M. 1991: A continuum theory for smectic C liquid crystals Mol. Cryst. Liq. Crist.: (1990) 198: 443-454
Lee, J.D.; Eringen, A.C. 1973: Continuum theory of smectic liquid crystals The Journal of Chemical Physics 58(10): 4203-4211
Kremer; Vallerien; Kapitza; Zentel; Fischer 1990: Constant molecular rotation at the smectic-A to smectic-C* transition in ferroelectric liquid crystals Physical Review. a Atomic Molecular and Optical Physics 42(6): 3667-3669
Lalanne; Buchert; Destrade; Nguyen; Marcerou 1989: Slowing down of molecular rotation at the smectic-A-->smectic-C transition of liquid crystals Physical Review Letters 62(26): 3046-3049
Weinan, E. 1997: Nonlinear Continuum Theory¶of Smectic-A Liquid Crystals Archive for Rational Mechanics and Analysis 137(2): 159-175
Geurst, J. 1971: Continuum theory of type-A smectic liquid crystals Physics Letters A 37(4): 279-280
Tang, Q.; Zhang, H. 2015: Nonlinear continuum theory of smectic-C liquid crystals Communications in Mathematical Sciences 13(7): 1787-1801
Calderer, M.; Joo, S. 2008: A Continuum Theory of Chiral Smectic C Liquid Crystals SIAM Journal on Applied Mathematics 69(3): 787-809
Gorkunov, M.V.; Giesselmann, F.; Lagerwall, J.P.F.; Sluckin, T.J.; Osipov, M.A. 2007: Molecular model for de Vries type smectic- a -smectic- C phase transition in liquid crystals Physical Review. e Statistical Nonlinear and Soft Matter Physics 75(6 Part 1): 060701
Thanassoulas, A.; Karatairi, E.; Cordoyiannis, G.; Kutnjak, Z.; Tzitzios, V.; Lelidis, I.; Nounesis, G. 2013: CdSe nanoparticles dispersed in ferroelectric smectic liquid crystals: effects upon the smectic order and the smectic-A to chiral smectic-C phase transition Physical Review. E Statistical Nonlinear and Soft Matter Physics 88(3): 032504
Leslie, F.M. 1993: Some flow effects in continuum theory for smectic liquid crystals Liquid Crystals 14(1): 121-130
Drossinos; Ronis 1986: Molecular-field derivation of a generalized Landau free energy for the isotropic, nematic, smectic-A, and smectic-C phases of liquid crystals Physical Review. a General Physics 33(1): 589-603
Lee, K.I.; Pastor, R.W.; Andersen, O.S.; Im, W. 2013: Assessing smectic liquid-crystal continuum models for elastic bilayer deformations Chemistry and Physics of Lipids 169: 19-26
Mukherjee, P.K. 2015: Smectic-A–smectic-C–smectic-C⁎ Lifshitz point in mixtures of chiral and achiral smectic liquid crystals Journal of Molecular Liquids 204: 10-14
Mirantsev, L.V. 1987: Microscopic description of nematic-semctic A2 and nematic-smectic A1-smectic A2 phase transitions in binary mixture of polar and nonpolar liquid crystals Molecular Crystals and Liquid Crystals (1969) 142(1-4): 59-76
McKay, G.; Leslie, F.M. 1997: A continuum theory for smectic liquid crystals allowing layer dilation and compression European Journal of Applied Mathematics 8(3): 273-280