Analysis of Stochastic Petri Net model with non-exponential distributions using a generalized Markov Renewal Process
Qun, J.I.N.; Sugasawa, Y.; Seya, K.
Microelectronics and Reliability 31(5): 933-939
1991
ISSN/ISBN: 0026-2714
Accession: 074049561
PDF emailed within 1 workday: $29.90
Related References
Qun, J.I.N.; Sugasawa, Y.; Seya, K. 1989: Probabilistic behavior and reliability analysis for a multi-robot system by applying Petri net and Markov renewal process theory Microelectronics and Reliability 29(6): 993-1001Koriem, S.M.; Patnaik, L.M. 1997: A generalized stochastic high-level Petri net model for performance analysis The Journal of Systems and Software 36(3): 247-265
Jin Young, C.H.O.I.; Reveliotis, S.A. 2003: A generalized stochastic Petri net model for performance analysis and control of capacitated reentrant lines IEEE Transactions on Robotics and Automation 19(3): 474-480
Abas, N; Daud, Z M.; Yusof, F 2014: A comparative study of mixed exponential and Weibull distributions in a stochastic model replicating a tropical rainfall process Theoretical and Applied Climatology 118(3): 597-607
Rosen, J.; Brown, J.D.; Chang, L.; Sinanan, M.N.; Hannaford, B. 2006: Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model IEEE Transactions on Bio-Medical Engineering 53(3): 399-413
Bhattacharjee, M.C. 1993: Aging renewal process characterizations of exponential distributions Microelectronics and Reliability 33(14): 2143-2147
Dallery, Y. 1994: On modeling failure and repair times in stochastic models for manufacturing systems using generalized exponential distributions Queueing Systems 15(1-4): 199-209
Haddad, S.; Moreaux, P.; Chiola, G. 1998: Distributions de Cox et phase-type dans les réseaux de Petri stochastiques : Une méthode efficace de résolution - Coxian and Phase-type distributions in stochastic Petri nets : an efficient method Atelier d'Evaluation de Performances 32(3): 289-323
From, S.G. 2004: Approximating the distribution of a renewal process using generalized Poisson distributions Journal of Statistical Computation and Simulation 74(9): 667-681
Perrone, T.J.; Miller, R.G. 1985: Generalized exponential Markov and model output statistics: a comparative verification Monthly Weather Review 113(9): 1524-1541
Herkenrath, U. 1999: Generalized adaptive exponential smoothing of observations from an ergodic hidden Markov model Journal of Applied Probability 36(4): 987-998
Castillo, I.; Reyes, S.A.; Peters, B.A. 2001: Modeling and analysis of tandem AGV systems using generalized stochastic Petri nets Journal of Manufacturing Systems 20(4): 236-249
Haverkort, B.R. 1993: Approximate performability and dependability analysis using generalized stochastic Petri nets International Workshop on Petri Nets and Performance Models 18(1): 61-78
Obzherin, Y.E.; Peschanskii, A.I.; Skatkov, A.V. 1994: Semi-Markov model of a renewal process with switching Journal of Mathematical Sciences 72(5): 3316-3319
Sivasamy, R.; Pandiyan, P. 2001: Markov renewal process of a two commodity inventory model International Journal of Information and Management Sciences 12(4): 61-72
Khodabin, M.; Maleknejad, K.; Rostami, M.; Nouri, M. 2012: Interpolation solution in generalized stochastic exponential population growth model Applied Mathematical Modelling 36(3): 1023-1033
Balbo, G.; Bruell, S.C.; Subbarao, G.H.A.N.T.A. 1986: Combining queueing network and generalized stochastic Petri Net models for the analysis of some solftware blocking phenomena IEEE Transactions on Software Engineering 12(4): 561-576
Janardan, K.G. 1997: A Stochastic Process and Generalized Distributions for the Study of Oviposition Evolution of a Parasite Biometrical Journal 39(7): 839-848
Abe, S. 2004: Stability analysis of generalized entropies and q-exponential distributions Physica. D 193(1-4): 84-89
Choi, H.; Kulkarni, V.G.; Trivedi, K.S. 1994: Markov regenerative stochastic Petri nets Perform. Eval 20(1-3): 337-357