Bäcklund transformation, Lax pairs and explicit exact solutions for the shallow water waves equation
Yadong, S.H.A.N.G.
Applied Mathematics and Computation 187(2): 1286-1297
2007
ISSN/ISBN: 0096-3003 Accession: 074199499
PDF emailed within 1 workday: $29.90
Related References
Han, P.; Bao, T. 2021: Bäcklund transformation and some different types of N‐soliton solutions to the (3 + 1)‐dimensional generalized nonlinear evolution equation for the shallow‐water waves Mathematical Methods in the Applied Sciences 44(14): 11307-11323Engui, F.; Hongqing, Z. 1998: Backlund transformation and exact solutions for whitham-broer-kaup equations in shallow water Applied Mathematics and Mechanics 19(8): 713-716
Tian, B. 1999: Symbolic Computation of Bäcklund Transformation and Exact Solutions to the Variant Boussinesq Model for Water Waves International Journal of Modern Physics C 10(06): 983-987
Wang, P.; Tian, B.; Liu, W.; Lü, X.; Jiang, Y. 2011: Lax pair, Bäcklund transformation and multi-soliton solutions for the Boussinesq–Burgers equations from shallow water waves Applied Mathematics and Computation 218(5): 1726-1734
Shang, Y.; Huang, Y. 2011: The Bäcklund transformations and abundant explicit exact solutions for the AKNS–SWW equation Communications in Nonlinear Science and Numerical Simulation 16(6): 2445-2455
Guoxiang, H.U.A.N.G.; Senyue, L.U.O.; Xianxi, D.A.I. 1989: Exact and explicit solitary wave solutions to a model equation for water waves Physics Letters. a 139(8): 373-374
Yadong, S.H.A.N.G.; Yong, H.U.A.N.G.; Wenjun, Y.U.A.N. 2011: Bäcklund transformations and abundant exact explicit solutions of the Sharma―Tasso―Olver equation Applied Mathematics and Computation 217(17): 7172-7183
Yan-Ze, P. 2003: New Bäcklund Transformation and new Exact Solutions to (2+1)-Dimensional Kd V Equation Communications in Theoretical Physics 40(3): 257-258
Arnous, A H.; Mirzazadeh, M.; Eslami, M. 2016: Exact solutions of the Drinfel'd–Sokolov–Wilson equation using Bäcklund transformation of Riccati equation and trial function approach Pramana 86(6): 1153-1160
Hirota, R. 1973: Exact N‐soliton solutions of the wave equation of long waves in shallow‐water and in nonlinear lattices Journal of Mathematical Physics 14(7): 810-814
Hon, Y.C.; Zhang, Y.; Mei, J. 2010: Exact Solutions for Differential-Difference Equations by Bäcklund Transformation of Riccati Equation Modern Physics Letters B 24(27): 2713-2724
Luo, L. 2011: New exact solutions and Bäcklund transformation for Boiti–Leon–Manna–Pempinelli equation Physics Letters A 375(7): 1059-1063
Yan, Z.; Zhang, H. 1999: Backlund transformation and exact solutions for (2 + 1)-dimensional Kolmogoroff-Petrovsky-Piscounov equation Communications in Nonlinear Science and Numerical Simulation 4(2): 146-151
Hu, X.; Wu, Y.; Zhu, S.; Geng, X. 1998: Some new results on the triple-humped soliton equation: Bäcklund transformation, superposition principle and new explicit solutions Journal of Physics A: Mathematical and General 31(44): 8859-8868
Liu, H.; Xin, X.; Wang, Z.; Liu, X. 2017: Bäcklund transformation classification, integrability and exact solutions to the generalized Burgers'–Kd V equation Communications in Nonlinear Science and Numerical Simulation 44: 11-18
Wang, M.; Wang, Y.; Zhou, Y. 2002: An auto-Backlund transformation and exact solutions to a generalized Kd V equation with variable coefficients and their applications Physics Letters A 303(1): 45-51
Lü, Z.; Su, J.; Xie, F. 2013: Construction of exact solutions to the Jimbo–Miwa equation through Bäcklund transformation and symbolic computation Computers-Mathematics with Applications 65(4): 648-656
Wang, D.; Zhang, H. 2005: Auto-Bäcklund Transformation and new Exact Solutions of the (2 + 1)-Dimensional Nizhnik–novikov–veselov Equation International Journal of Modern Physics C 16(03): 393-412
Ren, Y.; Zhang, H. 2006: New generalized hyperbolic functions and auto-Bäcklund transformation to find new exact solutions of the -dimensional NNV equation Physics Letters A 357(6): 438-448
Liu, J.; Li, Y. 2008: Auto-Bäcklund transformation and exact solutions of the generalized variable-coefficient Kadomtsev–Petviashvili equation Computer Physics Communications 179(10): 724-732