Basis sets for molecular interactions. IV: Energy decomposition analysis
Latajka, Z.
Journal of Molecular Structure. Theochem 251: 245-260
1991
ISSN/ISBN: 0166-1280
Accession: 074212335
PDF emailed within 1 workday: $29.90
Related References
Gao, W.; Feng, H.; Xuan, X.; Chen, L. 2012: The assessment and application of an approach to noncovalent interactions: the energy decomposition analysis (EDA) in combination with DFT of revised dispersion correction (DFT-D3) with Slater-type orbital (STO) basis set Journal of Molecular Modeling 18(10): 4577-4589Horn, P.R.; Mao, Y.; Head-Gordon, M. 2016: Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals Physical Chemistry Chemical Physics: Pccp 18(33): 23067-23079
Latajka, Z.; Scheiner, S. 1987: Basis sets for molecular interactions. II: Application to H3N-HF, H3N-HOH, H2O-HF, (NH3)2, and H3CH-OH2 Journal of Computational Chemistry 8(5): 674-682
Da Costa, H.F.M.; Micha, D.A. 1994: Atomic orbital basis sets for molecular interactions Journal of Computational Chemistry 15(6): 653-661
Latajka, Z.; Scheiner, S. 1987: Basis sets for molecular interactions I: Construction and tests on (HF)2 and (H2O)2 Journal of Computational Chemistry 8(5): 663-673
Bonaccorsi, R.; Palla, P.; Cimiraglia, R.; Tomasi, J. 1983: On the use of a MO polarized basis for the analysis of the interaction energy in molecular interactions: application to amine complexes International Journal of Quantum Chemistry 24(3): 307-316
Mao, Y.; Levine, D.S.; Loipersberger, M.; Horn, P.R.; Head-Gordon, M. 2020: Probing radical-molecule interactions with a second generation energy decomposition analysis of DFT calculations using absolutely localized molecular orbitals Physical Chemistry Chemical Physics: Pccp 22(23): 12867-12885
Rastelli, A.; Bagatti, M. 1992: Model calculations of chemical interactions. Part 4 : Directed valency and analysis of intramolecular interactions with redundant basis sets Journal of the Chemical Society. Faraday Transactions 88(17): 2451-2457
Hill, J.G.; Peterson, K.A. 2017: Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements Journal of Chemical Physics 147(24): 244106
Horn, P.R.; Sundstrom, E.J.; Baker, T.A.; Head-Gordon, M. 2013: Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: theory and applications to intermolecular interactions involving radicals Journal of Chemical Physics 138(13): 134119
Latajka, Z.; Scheiner, S. 1984: Improvement of polarized double-zeta basis sets for molecular interactions. Complexes of NH3, OH2, and FH with H+ and Li+ Chemical Physics Letters 105(4): 435-439
Azar, R.Julian.; Head-Gordon, M. 2012: An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level Journal of Chemical Physics 136(2): 024103
Hattig, C. 2005: Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core-valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr Pccp. Physical Chemistry Chemical Physics 7(1): 59-66
Rusakov, Y.Y.; Rusakova, I.L. 2021: An efficient method for generating property-energy consistent basis sets. new pecJ-n (n = 1, 2) basis sets for high-quality calculations of indirect nuclear spin-spin coupling constants involving 1H, 13C, 15N, and 19F nuclei Physical Chemistry Chemical Physics: Pccp 23(27): 14925-14939
Adamowicz, L.; Bartlett, R.J. 1984: Extended floating spherical Gaussian basis sets for molecules: alternative correlating orbitals for molecular energy calculations Chemical Physics Letters 110(4): 361-364