Basis sets in the LCAO Xα method. On the use of bond-centered basis functions in second-row homonuclear diatomics
Jorg, H.; Rosch, N.; Sabin, J.R.; Dunlap, B.I.
Chemical Physics Letters 114(5-6): 529-535
1985
ISSN/ISBN: 0009-2614
Accession: 074212339
PDF emailed within 1 workday: $29.90
Related References
Dotelli, G.; Lombardi, E.; Jansen, L. 1992: Valence bond model analysis of homonuclear alkali and halogen diatomics on the basis of exchange perturbation theory Journal of Molecular Structure. Theochem 276: 159-166Martin, J.M.L.; Francois, J.P.; Gijbels, R. 1989: Combined bond-polarization basis sets for accurate determination of dissociation energies. II: Basis set superposition error as a function of the parent basis set Journal of Computational Chemistry 10(7): 875-886
Hellweg, A.; Rappoport, D. 2015: Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations Physical Chemistry Chemical Physics: Pccp 17(2): 1010-1017
Hattig, C. 2005: Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core-valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr Pccp. Physical Chemistry Chemical Physics 7(1): 59-66
Phung, Q.M.; Hagai, M.; Xiong, X.-G.; Yanai, T. 2020: Polarization consistent basis sets using the projector augmented wave method: a renovation brought by PAW into Gaussian basis sets Physical Chemistry Chemical Physics: Pccp 22(46): 27037-27052
Radzio, E.; Andzelm, J.; Salahub, D.R. 1985: Compact basis sets for LCAO-LSD calculations. II: Tests for Cr2 and Ni4 Journal of Computational Chemistry 6(6): 533-537
Inada, Y.; Orita, H. 2008: Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets Journal of Computational Chemistry 29(2): 225-232
Mach, P.; Kysel, O. 1985: Comparison between 6-31 + bond functions and 6-31 G basis sets in UMP calculations of dissociation energies of the first row element compounds I Journal of Computational Chemistry 6(4): 312-315
Martin, J.M.L.; Francois, J.P.; Gijbels, R. 1989: Combined bond-polarization basis sets for accurate determination of dissociation energies. III: Basis set superposition error in polyatomic systems Theoretica Chimica Acta 76(3): 195-209
Faegri, K.; Almlof, J. 1986: Energy-optimized GTO basis sets for LCAO calculations. A gradient approach Journal of Computational Chemistry 7(4): 396-405
Papajak, E.; Zheng, J.; Xu, X.; Leverentz, H.R.; Truhlar, D.G. 2011: Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions Journal of Chemical Theory and Computation 7(10): 3027-3034
Tanaka, M.; Katouda, M.; Nagase, S. 2013: Optimization of RI-MP2 auxiliary basis functions for 6-31G** and 6-311G** basis sets for first-, second-, and third-row elements Journal of Computational Chemistry 34(29): 2568-2575
Papior, N.R.; Calogero, G.; Brandbyge, M. 2018: Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures Journal of Physics. Condensed Matter: An Institute of Physics Journal 30(25): 25lt01
Alexei, A. Buchachenko; Grzegorz Chałasiński; Małgorzata M. Szczȩśniak 2007: Diffuse basis functions for small-core relativistic pseudopotential basis sets and static dipole polarizabilities of selected lanthanides La, Sm, Eu, Tm and Yb Structural Chemistry 18(6): 769-772
Day, P.N.; Truhlar, D.G. 1991: The calculation of highly excited bound-state energy levels for a triatomic molecule by using three-arrangement basis sets and contracted basis functions The Journal of Chemical Physics 95(9): 6615-6621