Cepstrum-Domain Model Combination Based on Decomposition of Speech and Noise Using MMSE-LSA for ASR in Noisy Environments
Hong Kook, K.I.M.; Rose, R.C.
IEEE Transactions on Audio, Speech, and Language Processing 17(4): 704-713
2009
ISSN/ISBN: 1558-7916
Accession: 074365942
PDF emailed within 1 workday: $29.90
Related References
Hong Kook, K.I.M.; Rose, R.C. 2003: Cepstrum-domain acoustic feature compensation based on decomposition of speech and noise for ASR in noisy environments IEEE Transactions on Speech and Audio Processing 11(5): 435-446Lin, C.T.; Nein, H.W.; Hwu, J.Y. 2000: GA-based noisy speech recognition using two-dimensional cepstrum IEEE Transactions on Speech and Audio Processing 8(6): 664-675
Masakiyo Fujimoto; Yasuo Ariki 2007: Combination of GMM-based speech estimation method and temporal domain SVD-based speech enhancement for noise robust speech recognition Systems and Computers in Japan 38(3): 23-38
Górriz, J.M.; Ramírez, J.; Segura, J.C.; Puntonet, C.G. 2006: An effective cluster-based model for robust speech detection and speech recognition in noisy environments Journal of the Acoustical Society of America 120(1): 470-481
Jérôme Gilles 2007: Noisy Image Decomposition: A New Structure, Texture and Noise Model Based on Local Adaptivity Journal of Mathematical Imaging and Vision 28(3): 285-295
Xiaohu, H.U.; Shiwei, W.A.N.G.; Chengshi, Z.H.E.N.G.; Xiaodong, L.I. 2013: A cepstrum-based preprocessing and postprocessing for speech enhancement in adverse environments Applied Acoustics 74(12): 1458-1462
Kyeong Seong, W; Hun Park, J; Kook Kim, H 2014: Reducing Speech Noise for Patients with Dysarthria in Noisy Environments Ieice Transactions on Information and Systems E97.D(11): 2881-2887
Srensen, K.V.; Andersen, S.V. 2007: Rayleigh mixture model-based hidden markov modeling and estimation of noise in noisy speech signals IEEE Transactions on Audio, Speech, and Language Processing 15(3): 901-917
de Krom, G. 1993: A cepstrum-based technique for determining a harmonics-to-noise ratio in speech signals Journal of Speech and Hearing Research 36(2): 254-266
Zhang, Y; Zhao, Y 2013: Modulation domain blind speech separation in noisy environments Speech Communication 55(10): 1081-1099
Arnaud Martin; Laurent Mauuary 2006: Robust speech/non-speech detection based on LDA-derived parameter and voicing parameter for speech recognition in noisy environments Speech Communication 48(2): 191-206
Souden, M.; Araki, S.; Kinoshita, K.; Nakatani, T.; Sawada, H. 2013: A Multichannel MMSE-Based Framework for Speech Source Separation and Noise Reduction IEEE Transactions on Audio, Speech, and Language Processing 21(9-10): 1913-1928
Yang, H.; Huang, D.; Cai, L. 2006: Perceptually weighted mel-cepstrum analysis of speech based on psychoacoustic model Ieice Transactions on Information and Systems 89(12): 2998-3001
Salhi, L.; Cherif, A. 2013: Robustness of auditory Teager Energy Cepstrum Coefficients for classification of pathological and normal voices in noisy environments Thescientificworldjournal 2013: 435729
Tetsuya Takiguchi; Satoshi Nakamura; Kiyohiro Shikano 2000: Model adaptation by HMM decomposition and composition in noisy reverberant environments Systems and Computers in Japan 31(5): 77-85