Comparison of NMR cryoporometry, mercury intrusion porosimetry, and DSC thermoporosimetry in characterizing pore size distributions of compressed finely ground calcium carbonate structures
Gane, P.A.C.; Ridgway, C.J.; Lehtinen, E.; Valiullin, R.; Furo, I.; Schoelkopf, J.; Paulapuro, H.; Daicic, J.
Industrial and Engineering Chemistry Research 43(24): 7920-7927
2004
ISSN/ISBN: 0888-5885
Accession: 074504050
PDF emailed within 1 workday: $29.90
Related References
Yanbin Yao; Dameng Liu 2012: Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals Fuel 95: 152-158Ciftcioglu, M.; Smith, D.M.; Ross, S.B. 1988: Mercury porosimetry of ordered sphere compacts: investigation of intrusion and extrusion pore size distributions Powder Technology 55(3): 193-205
Shobha, K. Bhatia; Jennifer, L. Smith 1994: Comparative study of bubble point method and mercury intrusion porosimetry techniques for characterizing the pore-size distribution of geotextiles Geotextiles and Geomembranes 13(10): 679-702
Oya, M.; Takahashi, M.; Morimoto, M.; Iwata, Y.; Jono, K.; Hotta, T.; Yamamoto, H.; Washio, K.; Suda, A.; Matuo, Y.; Tanaka, K. 2002: Mercury determines pore-size distribution intrusion porosimetry American Ceramic Society Bulletin 81(3): 52-56
Dim, P E.; Fletcher, R S.; Rigby, S P. 2016: Improving the accuracy of catalyst pore size distributions from mercury porosimetry using mercury thermoporometry Chemical Engineering Science 140: 291-298
Zong, Y.; Yu, X.; Zhu, M.; Lu, S. 2015: Characterizing soil pore structure using nitrogen adsorption, mercury intrusion porosimetry, and synchrotron-radiation-based X-ray computed microtomography techniques Journal of Soils and Sediments 15(2): 302-312
Prasadini, R.P.; Nagarajarao, Y. 1993: Pore-size distribution of some red soils of Andhra Pradesh using mercury intrusion porosimetry Red and lateritic soils of India resource appraisal and management: 185-191
Gu, Z.; Goulet, R.; Levitz, P.; Ihiawakrim, D.; Ersen, O.; Bazant, M.Z. 2021: Mercury cyclic porosimetry: Measuring pore-size distributions corrected for both pore-space accessivity and contact-angle hysteresis Journal of Colloid and Interface Science 599: 255-261
Zauer, M; Hempel, S; Pfriem, A; Mechtcherine, V; Wagenführ, Aé 2014: Investigations of the pore-size distribution of wood in the dry and wet state by means of mercury intrusion porosimetry Wood Science and Technology 48(6): 1229-1240
Bafarawa, B.; Nepryahin, A.; Ji, L.; Holt, E.M.; Wang, J.; Rigby, S.P. 2014: Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids Journal of Colloid and Interface Science 426: 72-79
Bafarawa, B.; Nepryahin, A.; Lu, J.I.; Holt, E.M.; Jiawei, W.A.N.G.; Rigby, S.P. 2014: Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids Journal of Colloid and Interface Science (426): 72-79
Penumadu, D.; Dean, J. 2000: Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry Canadian Geotechnical Journal 37(2): 393-405
Penumadu Dayakar; Dean John 2000: Compressibility effect in evaluating the pore-size distribution of kaolin clay using mercury intrusion porosimetry Canadian Geotechnical Journal = Revue Canadienne de Geotechnique 37(2): 303-405
Guo, J.; Zhang, X.; Lu, C.; Chai, Z.; Kang, G.; Zhao, G.; Kang, T.; Zhang, S.; Li, H. 2022: Characterization of Pore Structures with Mercury Intrusion Porosimetry after Electrochemical Modification: a Case Study of Jincheng Anthracite Acs Omega 7(13): 11148-11157
Tanaka Hiroyuki; Shiwakoti Dinesh, R.; Omukai Naoki; Rito Fusao; Locat Jacques; Tanaka Masanori 2003: Pore size distribution of clayey soils measured by mercury intrusion porosimetry and its relation to hydraulic conductivity Soils and Foundations 43(6): 63-73