Coupled turbulence and aerosol dynamics modeling of vehicle exhaust plumes using the CTAG model
Jason Wang, Y.; Zhang, K.M.
Atmospheric Environment (1994) 59: 284-293
2012
ISSN/ISBN: 1352-2310
Accession: 074633934
PDF emailed within 1 workday: $29.90
Related References
Coimbra, Joao Carlos; Pinto, Iraja Damiani; Wurdig, Norma Luiza; Do Carmo, Dermeval Aparecido 2012: Coupled turbulence and aerosol dynamics modeling of vehicle exhaust plumes using the CTAG model Atmospheric Environment 59(none)Wang, Y.J.; Yang, B.; Lipsky, E.M.; Robinson, A.L.; Zhang, K.M. 2013: Analyses of turbulent flow fields and aerosol dynamics of diesel engine exhaust inside two dilution sampling tunnels using the CTAG model Environmental Science and Technology 47(2): 889-898
Wang, Y.Jason.; Nguyen, M.T.; Steffens, J.T.; Tong, Z.; Wang, Y.; Hopke, P.K.; Zhang, K.Max. 2013: Modeling multi-scale aerosol dynamics and micro-environmental air quality near a large highway intersection using the CTAG model Science of the Total Environment 443: 375-386
Wu, J.; Menon, S. 2001: Aerosol dynamics in the near field of engine exhaust plumes Journal of Applied Meteorology (1988) 40(4): 795-809
Albriet, B.; Sartelet, K.N.; Lacour, S.; Carissimo, B.; Seigneur, C. 2010: Modelling aerosol number distributions from a vehicle exhaust with an aerosol CFD model Atmospheric Environment 44(8): 1126-1137
Albriet, B.; Sartelet, K.N.; Lacour, S.; Carissimo, B.; Seigneur, C. 2010: Modelling aerosol number distributions from a vehicle exhaust with an aerosol CFD model Atmospheric Environment (1994) 44(8): 1126-1137
Olsen, J Erik; Skjetne, P; Johansen, S Tore 2017: VLES turbulence model for an Eulerian Lagrangian modeling concept for bubble plumes Applied Mathematical Modelling 44: 61-71
Seigneur, C. 1982: A model of sulfate aerosol dynamics in atmospheric plumes Atmospheric Environment 16(9): 2207-2228
Peitzmeier, C.; Loschke, C.; Wiedenhaus, H.; Klemm, O. 2017: Real-world vehicle emissions as measured by in situ analysis of exhaust plumes Environmental Science and Pollution Research International 24(29): 23279-23289
Schumann, U.; Konopka, P.; Baumann, R.; Busen, R.; Gerz, T.; Schlager, H.; Schulte, P.; Volkert, H. 1995: Estimate of diffusion parameters of aircraft exhaust plumes near the tropopause from nitric oxide and turbulence measurements Journal of Geophysical Research 100(D 7): 14147-14162
Miakelye, R.C.; Anderson, B.E.; Viggiano, A.A.; Cofer, W.R.; Wallio, H.A.; Nowicki, G.D.; Ballenthin, J.O.; Hunton, D.E.; Knighton, W.B.; Miller, T.M.; Seeley, J.V. 1998: SOx oxidation and volatile aerosol in aircraft exhaust plumes depend on fuel sulfur content Geophysical Research Letters 25(10): 1677-1680
Pohjola, M.; Pirjola, L.; Kukkonen, J.; Kulmala, M. 2003: Modelling of the influence of aerosol processes for the dispersion of vehicular exhaust plumes in street environment Atmospheric Environment (1994) 37(3): 339-351
Osborne, S R.; Johnson, D W.; Bower, K N.; Wood, R 2001: Modification of the aerosol size distribution within exhaust plumes produced by diesel-powered ships Journal of Geophysical Research 106(D9): 9827-9842
Pohjola, M.; Pirjola, L.; Kukkonen, J.; Kulmala, M. 2003: Modelling of the influence of aerosol processes for the dispersion of vehicular exhaust plumes in street environment Atmospheric Environment 37(3): 339-351
Sini, J.F.; Dekeyser, I. 1987: Numerical prediction of turbulence plane jets and forced plumes by use of the k-ε model of turbulence International Journal of Heat and Mass Transfer 30(9): 1787-1801