Discriminating Between the Log-Normal and Log-Logistic Distributions
Arabin Kumar, D.E.Y.; Kundu, D.
Communications in Statistics. Theory and Methods 39(1-2): 280-292
2010
ISSN/ISBN: 0361-0926
Accession: 074913040
PDF emailed within 1 workday: $29.90
Related References
Ashkar, F.; Aucoin, F. 2012: Discriminating between the Lognormal and the Log-Logistic Distributions for Hydrological Frequency Analysis Journal of Hydrologic Engineering 17(1): 160-167Debasis Kundu; Rameshwar, D. Gupta; Anubhav Manglick 2005: Discriminating between the log-normal and generalized exponential distributions Journal of Statistical Planning and Inference 127(1-2): 213-227
Aitchison, J.; Shen, S.M. 1980: Logistic normal distributions some properties and uses Biometrika 67(2): 261-272
Aly Ee, A.A.; Shayib, M.A. 1992: On some goodness-of-fit tests for the normal, logistic and extreme-value distributions Communications in Statistics. Theory and Methods 21(5): 1297-1308
Gajjar, A.V.; Khatri, C.G. 1967: Progressively censored samples in log normal and logistic distributions abstract populations Indian Science Congress Association Proceedings 54(3): 37
Abudayyeh, W.A.; Almomani, M.A.; Muttlak, H.A. 2003: Exact Bahadur slope for combining independent tests for normal and logistic distributions Applied Mathematics and Computation 135(2-3): 345-360
Donaldson, R.W. 1996: Calculating inverse CV, skew and PWM functions for Pearson-3, log-normal, extreme-value and log-logistic distributions Communications in Statistics. Simulation and Computation 25(3): 741-747
Escobar, L.A.; Meeker, W.Q. 1994: Fisher information matrix for the extreme value, normal and logistic distributions and censored data Applied Statistics 43(3): 533-540
Luis, A. Escobar and William, Q. Meeker, J 1994: Algorithm AS 292: Fisher Information Matrix for the Extreme Value, Normal and Logistic Distributions and Censored Data Journal of the Royal Statistical Society: Series C 43(3): 533-540
Xu, F.; Mittelhammer, R.C.; Torell, L.A. 1994: Modeling nonnegativity via truncated logistic and normal distributions: an application to ranch land price analysis Journal of Agricultural and Resource Economics 19(1): 102-114
Capecchi, V. 1965: Studies on the applications of logistic functions of Pearl and Reed in biology: I. Use of logistic function in special distributions Atti Soc Peloritana Sci Fis Mat Natur 11(1/2): 1-9
Geert Molenberghs; Geert Verbeke 2011: On the Weibull-Gamma frailty model, its infinite moments, and its connection to generalized log-logistic, logistic, Cauchy, and extreme-value distributions Journal of Statistical Planning and Inference 141(2): 861-868
O'Quigley, J.; Struthers, L. 1982: Survival models based upon the logistic and log--logistic distributions Computer Programs in Biomedicine 15(1): 3-11
Chan, K.-S.; Jiao, F.; Mikulski, M.A.; Gerke, A.; Guo, J.; Newell, J.D.; Hoffman, E.A.; Thompson, B.; Lee, C.H.; Fuortes, L.J. 2016: Novel Logistic Regression Model of Chest CT Attenuation Coefficient Distributions for the Automated Detection of Abnormal (Emphysema or ILD) Versus Normal Lung Academic Radiology 23(3): 304-314
Urbakh, V.I. 1961: On the problem of dissociation of statistical distributions deviating from normal values into 2 normal distributions. II. Asymmetric distributions Biofizika 6: 265-271