Effect of spatial distributions of contaminant microorganisms within tablet formulations on subsequent inactivation through compaction
Plumpton, E.J.; Gilbert, P.; Fell, J.T.
International Journal of Pharmaceutics 30(2-3): 237-240
1986
ISSN/ISBN: 0378-5173
Accession: 075054768
PDF emailed within 1 workday: $29.90
Related References
Plumpton, E.J.; Gilbert, P.; Fell, J.T. 1986: Effect of spatial distribution of contaminant microorganisms within tablet formulations on subsequent inactivation through compaction International Journal of Pharmaceutics (Kidlington) 30(2-3): 237-240Bos, C.E.; Bolhuis, G.K.; Van Doorne, H.; Lerk, C.F. 1987: Native starch in tablet formulations: properties on compaction Pharmaceutisch Weekblad. Scientific Edition 9(5): 274-282
Bos, C.E.; Bolhuis, G.K.; Van Doorne, H.; Lerk, C.F. 1988: Native starch in tablet formulations properties on compaction Acta Pharmaceutica Technologica 34(1): 14S
Gamlen, M.John.Desmond.; Martini, L.G.; Al Obaidy, K.G. 2015: Effect of repeated compaction of tablets on tablet properties and work of compaction using an instrumented laboratory tablet press Drug Development and Industrial Pharmacy 41(1): 163-169
Wang, J.J.; Guillot, M.A.; Bateman, S.D.; Morris, K.R. 2004: Modeling of adhesion in tablet compression. II. Compaction studies using a compaction simulator and an instrumented tablet press Journal of Pharmaceutical Sciences 93(2): 407-417
Khan, K.A.; Rhodes, C.T. 1976: Effect of variation in compaction force on properties of six direct compression tablet formulations Journal of Pharmaceutical Sciences 65(12): 1835-1837
Osamura, T.; Takeuchi, Y.; Onodera, R.; Kitamura, M.; Takahashi, Y.; Tahara, K.; Takeuchi, H. 2016: Characterization of tableting properties measured with a multi-functional compaction instrument for several pharmaceutical excipients and actual tablet formulations International Journal of Pharmaceutics 510(1): 195-202
Greco, G.T. 1985: Segregation of active constituents from tablet formulations during grinding iii. effects on coated tablet formulations Drug Development and Industrial Pharmacy 11(9-10): 1889-1900
Juhl, W.E.; Kirchhoefer, R.D. 1980: Aspirin--a national survey I: Semiautomated determination of aspirin in bulk and tablet formulations and salicyclic acid in tablet formulations Journal of Pharmaceutical Sciences 69(5): 544-548
Sinka, I.C.; Cunningham, J.C.; Zavaliangos, A. 2004: Analysis of tablet compaction. II. Finite element analysis of density distributions in convex tablets Journal of Pharmaceutical Sciences 93(8): 2040-2053
Moore, S.C.; English, R.J.; Chanh, S.Y.R.A.V.A.N.H.; Tow, D.E.; Zimmerman, R.E.; Chan, K.H.; Kijewski, M.F. 1995: Simultaneous Tc-99m/Tl-201 imaging using energy-based estimation of the spatial distributions of contaminant photons Mic : Medical Imaging Conference 42(4): 1189-1195
Qiao, P.; Yang, S.; Wei, W.; Li, P.; Cheng, Y.; Liang, S.; Lei, M.; Chen, T. 2021: Effectiveness of predicting spatial contaminant distributions at industrial sites using partitioned interpolation method Environmental Geochemistry and Health 43(1): 23-36
Altaf, S.A.; Hoag, S.W. 1995: Deformation of the Stokes B2 rotary tablet press: quantitation and influence on tablet compaction Journal of Pharmaceutical Sciences 84(3): 337-343
Ropero, J.; Colón, Y.; Johnson-Restrepo, B.; Romañach, R.J. 2011: Near-infrared chemical imaging slope as a new method to study tablet compaction and tablet relaxation Applied Spectroscopy 65(4): 459-465
Nguyen, T H.; Morton, D A.V.; Hapgood, K P. 2013: Application of the unified compaction curve to link wet granulation and tablet compaction behaviour Powder Technology 240: 103-115