Empirical orthogonal functions and attractor dimensions for computed and observed meteorological time series
Zimmermann, G.
Contributions to Atmospheric Physics 68(2): 149-160
1995
ISSN/ISBN: 0303-4186
Accession: 075208654
PDF emailed within 1 workday: $29.90
Related References
Henderson, H.W.; Weils, R. 1988: Obtaining attractor dimensions from meteorological time series Advances in Geophysics (30): 205-237Obled, C.; Creutin, J.D. 1986: Some developments in the use of empirical orthogonal functions for mapping meteorological fields Journal of Climate and Applied Meteorology 25(9): 1189-1204
Yan Shaojin; Peng Yongqing; Wang Jianzhong 1991: Determination of kolmogorov entropy of chaotic attractor included in onedimensional time series of meteorological data Advances in Atmospheric Sciences 8(2): 243-250
Hisdal, H.; Tveito, O.E. 1993: Extension of runoff series using empirical orthogonal functions Hydrological Sciences Journal 38(1): 33-49
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 1997: Characterization of Global Mean Sea Level Variations Observed by TOPEX/POSEIDON Using Empirical Orthogonal Functions Surveys in Geophysics 18(2-3): 293-302
Lie-Yauw Oey; Tal Ezer; Wilton Sturges 2004: Modeled and observed empirical orthogonal functions of currents in the Yucatan Channel, Gulf of Mexico Journal of Geophysical Research: Oceans 109(C8)
Loboda, N.S.; Glushkov, A.V.; Khokhlov, V.N. 2006: Using meteorological data for reconstruction of annual runoff series over an ungauged area: empirical orthogonal function approach to Moldova-Southwest Ukraine region Atmospheric Research 77(1/4): 100-113
Hisdal, H.; Tveito, O.E. 1992: Generation of runoff series at ungauged locations using empirical orthogonal functions in combination with kriging Stochastic Environmental Research and Risk Assessment 6(4): 255-269
Kawamura, R 1989: A Space-Time Data Analysis using Complex Empirical Orthogonal Functions Geographical Review of Japan 62(11): 812-822
Peter Domonkos; Petr Štěpánek 2009: Statistical characteristics of detectable inhomogeneities in observed meteorological time series Studia Geophysica et Geodaetica 53(2): 239-260
Hjelmervik, K; Hjelmervik, K Thomas 2014: Time-calibrated estimates of oceanographic profiles using empirical orthogonal functions and clustering Ocean Dynamics 64(5): 655-665
Galin, M.B. 2007: Study of the low-frequency variability of the atmospheric general circulation with the use of time-dependent empirical orthogonal functions Izvestiya, Atmospheric and Oceanic Physics 43(1): 15-23
Petitgas, P.; Doray, M.; Huret, M.; Masse, J.; Woillez, M. 2014: Modelling the variability in fish spatial distributions over time with empirical orthogonal functions: anchovy in the Bay of Biscay Ices Journal of Marine Science 71(9): 2379-2389
Sheshadri, A; Plumb, R. Alan 2017: Propagating Annular Modes: Empirical Orthogonal Functions, Principal Oscillation Patterns, and Time Scales Journal of the Atmospheric Sciences 74(5): 1345-1361
Mwale, D.; Gan, T.Y.; Shen, S.S.P.; Shu, T.T.; Kim, K.M. 2007: Wavelet Empirical Orthogonal Functions of Space-Time-Frequency Regimes and Predictability of Southern Africa Summer Rainfall Journal of Hydrologic Engineering 12(5): 513-523