Fracture statistics: a comparison of the normal, Weibull, and type I extreme value distributions
Doremus, R.H.
Journal of Applied Physics 54(1): 193-198
1983
ISSN/ISBN: 0021-8979
Accession: 075541645
PDF emailed within 1 workday: $29.90
Related References
Paul, S.R.; Yuen Fung, K. 1986: Critical values for dixon type test statistics for testing outlers in weibull or extreme value distributions Communications in Statistics. Simulation and Computation 15(1): 277-283Chao, A.; Suejih, H.W.A.N.G. 1986: Comparison of confidence intervals for the parameters of the weibull and extreme value distributions IEEE Transactions on Reliability 35(1): 111-113
Shimokawa, T.; Min, L.I.A.O. 1999: Goodness-of-fit tests for type-I extreme-value and 2-parameter Weibull distributions IEEE Transactions on Reliability 48(1): 79-86
Danzer, R.; Supancic, P.; Pascual, J.; Lube, T. 2007: Fracture statistics of ceramics : Weibull statistics and deviations from Weibull statistics Engineering Fracture Mechanics 74(18): 2919-2932
Lu, C.; Danzer, R.; Fischer, F.D. 2002: Fracture statistics of brittle materials: Weibull or normal distribution Physical Review. e Statistical Nonlinear and Soft Matter Physics 65(6 Part 2): 067102
Marohn, F. 1991: Global sufficiency of extreme order statistics in location models of Weibull type Probability Theory and Related Fields 88(2): 261-268
Min, L.I.A.O.; Shimokawa, T. 1999: A new goodness-of-fit test for type-I extreme-value and 2-parameter weibull distributions with estimated parameters Journal of Statistical Computation and Simulation 64(1): 23-48
Tumidajski, P.J.; Fiore, L.; Khodabocus, T.; Lachemi, M.; Pari, R. 2006: Comparison of Weibull and normal distributions for concrete compressive strengths Canadian Journal of Civil Engineering 33(10): 1287-1292
Nanang, D.M. 1998: Suitability of the Normal, Log-normal and Weibull distributions for fitting diameter distributions of neem plantations in Northern Ghana Forest Ecology and Management 103(1): 1-7
Janssen, A.; Reiss, R.-D. 1988: Comparison of location models of Weibull type samples and extreme value processes Probability Theory and Related Fields 78(2): 273-292
Nowotnick, E.; Kovacs, Z. 1987: Möglichkeiten zur rechnergestützten und graphischen Ermittlung der Parameter von Weibull-Verteilungen - Possibilités de détermination graphique, assistée par ordinateur, des paramètres des distributions de Weibull - Possibilities of computer-aided and graphical determination of the parameters of Weibull distributions Chemische Technik (Berlin, Ddr, 1949) 39(5): 193-195
Ahmed, A.; Khan, A.A.; Ahmad, S.P. 2007: Bayesian analysis of Weibull and extreme-value distributions in S-PLUS and R softwares International Journal of Agricultural and Statistical Sciences 3(1): 175-188
Gardes, L.; Girard, S. 2005: Estimating extreme quantiles of weibull tail distributions Communications in Statistics. Theory and Methods 34(5): 1065-1080
Khazaei,J.; Jafari,S.; Noorolahi,S. 2008: Lognormal vs normal and Weibull distributions for modeling the mass and size distributions of sunflower seeds and kernels World Conference On Agricultural Information And It, Iaald Afita Wcca: 16
Zhang, L.; Liu, C. 2006: Fitting irregular diameter distributions of forest stands by Weibull, modified Weibull, and mixture Weibull models Journal of Forest Research 11(5): 369-372